
Scientific Bulletin of the Petru Maior University of Tirgu Mures  
Vol. 6 (XXIII), 2009 
ISSN 1841-9267 

 

 

Keywords: entity refactoring, set selection problem, genetic 
algorithms 

First Results of an Evolutionary Approach for

the Entity Refactoring Set Selection Problem

Camelia Chisăliţă–Creţu

Faculty of Mathematics and Computer Science

Babeş-Bolyai University

1, M. Kogalniceanu Street

RO-400084 Cluj-Napoca, Romania

cretu@cs.ubbcluj.ro

Abstract

Refactoring is a commonly accepted technique to im-

prove the structure of object oriented software. The paper

presents a multi-objective approach of the Entity Refactor-

ing Set Selection Problem (ERSSP) by treating the cost con-

straint as an objective and combining it with the effect ob-

jective. A weighted objective genetic algorithm is proposed

and run on an experimental didactic case study. The results

for several experiments with different weight parameter val-

ues are discussed too.

1. Introduction

Software systems continually change as they evolve to

reflect new requirements, but their internal structure tends

to decay. Refactoring is a commonly accepted technique

to improve the structure of object oriented software [5]. Its

aim is to reverse the decaying process in software quality by

applying a series of small and behaviour-preserving trans-

formations, each improving a certain aspect of the system

[5].

ERSSP is an example of a Feature Subset Selection

(FSS) search problem in SBSE field, that identifies the op-

timal set of refactorings that may be applied to software

entities, such that several objectives are kept or improved.

ERSSP is a part of larger problem that dicusses the differ-

ent types of strategies that may be applied when refactoring.

One of the aspects is represented by the case when a set of

the most efficient refactorings have to be identified, which

is the case of ERSSP. The paper shortly presents a for-

mal definition of the MOERSSP and performs a proposed

weighted objective genetic algorithm on an experimental di-

dactic case study. In order to identify a single refactoring

that may be applied to a software entity, MOERSSP treates

the cost constraint as an objective and combines it with the

effect objective. Obtained results for our case study with

different weight paramenter values are presented and dis-

cussed.

The rest of the paper is organized as follows: Section 2

presents the formal definition of the studied problem, while

Section 3 shortly reminds the Multi-Objective Optimization

Problem (MOOP). The proposed approach and several de-

tails related to the genetic operators of the genetic algorithm

are described in Section 4. A short description of the Local

Area Network simulation source code used to validate our

approach is provided in Section 5. The obtained results for

the studied source code are presented and compared in Sec-

tion 6. Recent related work are reminded in Section 7. The

paper ends with conclusions and future work.

2. ERSSP Definition

The complete definition for the ERSSP is presented in

[2]. In order to understand the problem a brief summary is

given here. Let SE = {e1, . . . , em} be a set of software enti-

ties, i.e., a class, an attribute from a class, a method from a

class, a formal parameter from a method or a local variable

declared in the implementation of a method. The weight as-

sociated with each software entity ei, 1 ≤ i ≤ m is kept by the

set Weight = {w1, . . . , wm}, where wi ∈ [0, 1] and
∑

m

i=1
wi = 1.

A set of possible relevant chosen refactorings [5] that

may be applied to different types of software entities of SE

is gathered up through SR = {r1, . . . , rt}. There are various

dependencies between such transformations when they are

applied to the same software entity, a mapping emphasizing

them being defined by:

rd : SR× SR× SE →
{Before,After,AlwaysBefore,AlwaysAfter,Never,Whenever},

7



rd(rh, rl, ei) =















B, if rh may be applied to ei only before rl, rh < rl

A, if rh may be applied to ei only after rl, rh > rl

AB, if rh and rl are both applied to ei then rh < rl

AA, if rh and rl are both applied to ei then rh > rl

N, if rh and rl cannot be both applied to ei

W, otherwise, i.e., rh and rl may be both applied to ei

,

where 1 ≤ h, l ≤ t, 1 ≤ i ≤ m. The effort involved by each

transformation is converted to cost, described by the func-

tion rc : SR×SE → Z. Changes made to each software entity

ei, i = 1, m by applying the refactoring rl, 1 ≤ l ≤ t are stated

and a mapping is defined: effect : SR× SE → Z. The overall

effect of applying a refactoring rl, 1 ≤ l ≤ t to each software

entity ei, i = 1, m is defined by the mapping res : SR → Z.

The goal is to find a subset of refactorings RSet such that

for each entity ei, i = 1,m there is at least a refactoring

r ∈ RSet that may be applied to it, i.e., ei ∈ SEr. Thus,

ERSSP is the identification problem of the most appropri-

ate refactorings that may be applied to each software entity

such that several objectives are kept or improved, like the

minimum total cost and the maximum overall effect on the

affected software entities.

3. MOOP Model

MOOP is defined in [9] as the problem of finding a de-

cision vector
→

x= (x1, . . . , xn), which optimizes a vector of M

objective functions fi(
→

x ) where 1 ≤ i ≤ M , that are subject

to inequality constraints gj(
→

x ) ≥ 0 , 1 ≤ j ≤ J and equality

constraints hk(
→

x ) = 0 , 1 ≤ k ≤ K. A MOOP may be defined
as:

maximize{F (
→

x )} = maximize{f1(
→

x ), . . . , fM (
→

x )},

with gj(
→

x ) ≥ 0, 1 ≤ j ≤ J and hk(
→

x ) = 0, 1 ≤ k ≤ K where
→

x is

the vector of decision variables and fi(
→

x ) is the i-th objective

function; and g(
→

x ) and h(
→

x ) are constraint vectors.

There are several ways to deal with a multi-objective op-

timization problem. In this paper the weighted sum method

[6] is used.

Let us consider the objective functions f1, f2,. . . , fM . This

method takes each objective function and multiplies it by

a fraction of one, the ”weighting coefficient” which is rep-

resented by wi, 1 ≤ i ≤ M . The modified functions are then

added together to obtain a single fitness function, which can

easily be solved using any method which can be applied for

single objective optimization.
Mathematically, the new mapping may be written as:

F (
→

x ) =

M
∑

i=1

wi ∗ fi(
→

x ), 0 ≤ wi ≤ 1,

M
∑

i=1

wi = 1.

3.1. MOERSSP Formulation

Multi-objective optimization often means to compro-
mise conflicting goals. For our MOERSSP formulation
there are two objectives taken into consideration in or-
der to maximize refactorings effect upon software entities

and minimize required cost for the applied transformations.
Current research treats cost as an objective instead of a con-
straint. Therefore, the first objective function defined below
minimizes the total cost for the applied refactorings, as:

minimize
{

f1(
→

r )
}

=

{

t
∑

l=1

m
∑

i=1

rc(rl, ei)

}

,

where
→

r = (r1, . . . , rt). The second objective function maxi-
mize the total effect of applying refactorings upon software
entities, considering the weight of the software entities in
the over all system, like:

maximize
{

f2(
→

r )
}

=

{

t
∑

l=1

m
∑

i=1

wi ∗ effect(rl, ei)

}

,

where
→

r = (r1, . . . , rt).

The goal is to select a subset of entities for each pro-
posed refactoring that results in the minimum total cost and
the maximum effect upon affected software entities. In or-
der to convert the first objective function to a maximization
problem in the MOERSSP, the total cost is subtracted from
MAX , the biggest possible total cost, as it is shown below:

maximize
{

f1(
→

r )
}

=

{

MAX −

t
∑

l=1

m
∑

i=1

rc(rl, ei)

}

,

where
→

r = (r1, . . . , rt). The final fitness function for MO-
ERSSP is defined by aggregating the two objectives and
may be written as:

F (
→

r ) = α · f1(
→

r ) + (1− α) · f2(
→

r ),

where 0 ≤ α ≤ 1.

4. Proposed Approach Description

The decision vector
→

S= (S1, . . . , St), Sl ⊆ SE ∪ φ, 1 ≤ l ≤ t

determines the entities that may be transformed using the

proposed refactorings set SR . The item Sl on the l-th po-

sition of the solution vector represents a set of entities that

may be refactored by applying the l-th refactoring from SR,

where each entity elu ∈ SErl
, elu ∈ Sl ⊆ SE ∪ φ, 1 ≤ u ≤ q, 1 ≤

q ≤ m, 1 ≤ l ≤ t. This means it is possible to apply more than

once different refactorings to the same software entity, i.e.,

distinct gene values from the chromosome may contain the

same software entity.

A steady-state evolutionary algorithm was applied here,

a single individual from the population being changed at a

time. The best chromosome (or a few best chromosomes)

is copied to the population in the next generation. Elitism

can very rapidly increase performance of GA, preventing to

lose the best found solution. A variation is to eliminate an

equal number of the worst solutions, i.e. for each best chro-

mosome kept within the population a worst chromosome is

deleted.

8



4.1. Genetic Operators

The parameters used by the evolutionary approach are as

follows: mutation probability 0.7 and crossover probability

0.7. Different number of generations and of individuals are

used: number of generations 10, 50, 100, 200 and number

of individuals 20, 50, 100, 200. The value of α used while

aggregating the objectives was set to 0.5 which gives the

same importance to both objectives.

For the crossover operator a simple one point crossover

scheme is used. A crossover point is randomly chosen. All

data beyond that point in either parent string is swapped

between the two parents.

For example, if the two parents are: parent1 =

[ga[1, 7], gb[3, 5, 10], gc[8], gd[2, 3, 6, 9, 12], ge[11], gf [13, 4]] and

parent2 = [g1[4, 9, 10, 12], g2[7], g3[5, 8, 11], g4[10, 11], g5[2, 3, 12],

g6[5, 9]] and the cutting point is 3, the two resulting off-

springs are: offspring1 = [ga[1, 7], gb[3, 5, 10], gc[8], g4[10, 11],

g5[2, 3, 12], g6[5, 9]] and offspring2 = [g1[4, 9, 10, 12], g2[7],

g3[5, 8, 11], gd[2, 3, 6, 9, 12], ge[11], gf [13, 4]].

Mutation Operator used here exchanges the value of a

gene with another value from the allowed set. In other

words, mutation of i-th gene consists of adding or removing

a software entity from the set that denotes the i-th gene. We

have used 11 mutations for each chromosome, number of

genes being 6.

For instance, if we have the chromosome

parent = [ga[1, 7], gb[3, 5, 10] gc[8], gd[2, 6, 9, 12] ge[12] gf [13, 4]]

and we chose to mutate the fifth gene,

then a possible offspring may be parent =

[ga[1, 7] gb[3, 5, 10] gc[8] gd[2, 6, 9, 12] ge[10, 12] gf [13, 4]] by

adding the 10-th software entity to the 5-th gene.

4.2. Data Normalization

Normalization is the procedure used in order to compare

data having different domain values. It is necessary to make

sure that the data being compared is actually comparable.

Normalization will always make data look increasingly sim-

ilar. An attribute is normalized by scaling its values so they

fall within a small-specified range, e.g., 0.0 to 1.0.

As we have stated above we would like to obtain a subset

of refactorings to be applied to each software entity from a

given set of entities, such that we obtain a minimum cost

and a maximum effect. The cost for an applied refactoring

to an entity is between 0 and 100. At each step of the selec-

tion the res function is considered. We must normalize the

cost of applying the refactoring, i.e., rc mapping, and the

value of the res function too. Two methods to normalize the

data: decimal scaling for the rcmapping and min-max nor-

malization for the value of the res function have been used

here.

5. Case Study: LAN Simulation

The algorithm proposed was applied on a simplified ver-

sion of the Local Area Network (LAN) simulation source

code, that was presented in [3]. Figure 1 shows the class di-

agram of the studied source code. It contains 5 classes with

5 attributes and 13 methods, constructors included.

Figure 1. Class diagram for LAN simulation

Thus, for the studied problem the software entity set is

defined as: SE = {c1, ..., c5, a1, ..., a5, m1, ..., m13}. The cho-

sen refactorings that may be applied are: renameMethod,

extractSuperClass, pullUpMethod, moveMethod, encap-

sulateField, addParameter, denoted by the set SR =

{r1, . . . , r6} in the following. The dependency relationship

between refactorings is defined in what follows: {(r1, r3) =

B, (r1, r6) = AA, (r2, r3) = B, (r3, r1) = A, (r6, r1) =

AB, (r3, r2) = A, (r1, r1) = N, (r2, r2) = N, (r3, r3) =

N, (r4, r4) = N, (r5, r5) = N, (r6, r6) = N}. For the res map-

ping, values were computed for each refactoring, by using

a specified weight for each existing and possible affected

software entity, as it was defined in Section 2. The value

of the res function for each refactoring is: 0.4, 0.49, 0.63,

0.56, 0.8, 0.2.

Here, the cost mapping rc is computed as the number of

the needed transformations, therefore related entities may

have different costs for the same refactoring. Each software

entity has a weight within the entire system, but
∑

23

i=1
wi =

1. Due to the space limitation, intermediate data for other

mapping (e.g., effect) was not included. For effect mapping,

values were considered to be numerical data, denoting esti-

mated impact of refactoring applying.

6. Practical Experiments for the Proposed Ap-

proach

The algorithm was run 100 times and the best, worse and

average fitness values were recorded. The following subsec-

tions reveal the obtained results for different values of the

α parameter, by balancing or not the weight for the stud-

ied objectives. The results are summarized and discussed in

the last subsection. The run experiments have worked with

the α parameter having different values, like: 0.3 and 0.5.

9



Therefore, the fitness function is rewritten by replacing the

α paramater consequently, within the formula:

F (
→

r ) = α · f1(
→

r ) + (1− α) · f2(
→

r ),where
→

r = (r1, . . . , rm).

6.1. Equal Weights: α = 0.5

A first experiment proposes equal weights, i.e., α = 0.5,

where the final effect (res function) has the same relevance

as the implied cost (rc mapping) of the applied refactor-

ings. Figure 2 presents the 10 generations evolution of

the fitness function (best, worse and average) for 20 chro-

mosomes populations (Figure 2(a)) and 200 chromosomes

populations (Figure 2(b)).

(a) Experiment with 10 generations and 20 individuals

with eleven mutated genes

(b) Experiment with 10 generations and 200 individuals

Figure 2. The evolution of fitness function

(best, worse and average) for 20 and 200 in-

dividuals with 10 generations

It is easy to see that there is a strong struggle between

chromosomes in order to breed the best individual. In the

20 individuals populations the competition results in differ-

ent quality of the best individuals for various runs, from

very weak to very good solutions. The 20 individuals pop-

ulations runs have a few very weak solutions, worse than

0.35, but there are a lot of good solutions, i.e., 22 chromo-

somes with fitness better than 0.41. Compared to the for-

mer populations, the 200 chromosomes populations breed

closer best individuals, since there is no chromosome with

fitness value worse than 0.35, but the number of good chro-

mosomes is smaller than the one for 20 individuals popu-

lations, i.e., 8 chromosomes with fitness better than 0.41

only. The data for the worst chromosomes reveals simi-

lar results, since for the 200 individuals populations there

is no chromosome with fitness better than 0.25, while for

the 20 chromosomes populations there is a large number

of worse individuals better than 0.25. This situation out-

lines an intense activity in smaller populations, compared

to larger ones, where diversity among individuals reduces

the population capability to quickly breed better solutions.

The number of chromosomes with fitness value better

than 0.41 for the studied populations and generations is cap-

tured by Figure 3. It shows that smaller populations with

poor diversity among chromosomes have a harder competi-

tion within them and more, the number of eligible chromo-

somes increases quicker for smaller populations than for the

larger ones. Therefore, for the 20 chromosomes populations

with 200 generations evolution all 100 runs have shown that

the best individuals are better than 0.41, while for 200 in-

dividuals populations with 200 generations the number of

best chromosomes better than 0.41 is only 53.

Figure 3. The evolution of the number of chro-

mosomes with fitness better than 0.41 for the

20, 50, 100 and 200 individual populations

For the recorded experiments, the best individual for

200 generations was better for 20 chromosomes populations

(with a fitness value of 0.4793) than the 200 individuals

populations (with a fitness value of just 0.4515). Various

runs as number of generations, i.e., 10, 50, 100 and 200 gen-

erations, show the improvement of the best chromosome.

Thus, the best individual fitness value for 10 generations

is 0.43965 for 20 individuals populations and 0.43755 for

200 chromosomes populations. This means in small popu-

lations (with few individuals) the reduced diversity among

chromosomes may induce a harsher struggle compared to

large populations (with many chromosomes) where the di-

versity breeds weaker individuals. As it was said before,

after several generations smaller populations produce better

individuals (as number and quality) than larger ones, due to

the poor populations diversity itself.

The best individual obtained allows to improve the struc-

ture of the class hierarchy. Therefore, a new Server class

is the base class for PrintServer and FileServer

classes. More, the signatures of the print method from

the PrintServer class and the save method from the

FileServer class are changed and then both renamed to

10



process. The accept method is pulled up to the new

Server class. The two refactorings applied to the print

and save methods ensure their polymorphic behaviour.

The correct access to the class fields by encapsulating them

within their classes is enabled. The current solution repre-

sentation allows to apply more than one refactoring to each

software entity, i.e., method print from PrintServer

class is transformed by two refactorings, addParameter and

renameMethod.

6.2. Different Weights: α = 0.3

Another experiment with different weights, i.e., α = 0.3,

where the final effect (res function) has a greater relevance

than the implied cost (rc mapping) of the applied refactor-

ings is presented below.

Figure 4 shows the the number of chromosomes better

than 0.298 for the 20, 50, 100 and 200 individuals pop-

ulations with 10, 50, 100 and 200 generations. It shows

the grouping of the eligible chromosomes for the 100 and

200 individuals populations for each number of genera-

tions. The solutions for the 20 individuals populations for

the studied number of generations keep their good quality,

since the number of eligible chromosomes remains higher

than any individuals population recorded by the experiment.

Figure 4. The evolution of the number of chro-

mosomes with fitness better than 0.298 for

the 20, 50, 100 and 200 individuals popula-

tions, with α = 0.3

The experiment shows good results in all 100 runs as

quality and number for the studied individuals populations

and number of generations. In the 200 generations runs

for 200 chromosomes populations the greatest value of

the fitness function was 0.33426 (with 45 individuals with

the fitness > 0.298) while in the 200 evolutions experi-

ments for 50 individuals populations the best fitness value

was not more than 0.32772 (88 individuals with the fit-

ness > 0.298). But the best chromosome was found in the

experiment with 200 generations and 20 individuals hav-

ing the value 0.33587 (with all individuals with the fitness

> 0.298).

The best individual obtained by this solution representa-

tion makes only small changes to the structure of the class

hierarchy. Its analysis allows to extract a base class for

the PrintServer and FileServer classes. Therefore,

a new class named Server is added to the source code.

The addParameter refactoring was not suggested such

that the signature for printmethod from PrintServer

class and for save method from FileServer class

are changed in order to allow the corresponding accept

methods from the PrintServer and FileServer

classes to be pulled up. More, no appearance for the

encapsulatedField refactoring have been recorded.

6.3. Discussion

Current paper presents the results of the proposed ap-
proach in Section 4 for three different value for the α pa-
rameter, i.e., 0.3, 0.5. A chromosome summary of the ob-
tained results for all experiments is given below:

• α = 0.3, bestF itness = 0.33587 for 20 chromosomes and
200 generations

– bestChrom = [[10, 22, 21, 19, 15], [3, 2], [21, 19, 10, 16,
17, 13, 11, 14, 12], [19, 10, 22, 11, 13, 16], [Φ], [21, 22]]

• α = 0.5, bestF itness = 0.4793 for 20 chromosomes and
200 generations

– bestChrom = [[20, 13, 19, 11], [1, 2], [15, 10, 20, 17, 19,
13, 12], [12, 11, 15, 14, 21], [6, 8, 9], [22, 12, 18, 17, 13,
14, 15]]

The experiment for α = 0.3 should identify those refac-

torings for which the cost has a lower relevance than the

overall impact on the applied software entities. But, the

obtained best chromosome obtained has the fitness value

0.33587, loer than the best fitness value for the α = 0.5

chromosome, i.e., 0.4793. This shows that an agreggated

fitness function with a higher weight for the overall impact

of the applied refactorings unbalance the fitness function.

Therefore, there are not too many key software entities to

be refactored by a such an experiment.

Balancing the fitness values for the studied experiments

and the relevance of the suggested solutions, we consider

the α = 0.5 experiment is more relevant as quality of the

results, than the other analyzed experiments. Figure 5 high-

lights the changes in the class hierarchy for the α = 0.5.

7. Obtained Results by Others

Fatiregun et al. [4] applied genetic algorithms to iden-

tify transformation sequences for a simple source code, with

5 transformation array, whilst we have applied 6 distinct

refactorings to 23 entities. Seng et al. [8] apply a weighted

11



Figure 5. The class diagram for the LAN Sim-

ulation source code, with α = 0.5

multi-objective search, in which metrics are combined into

a single objective function. An heterogeneous weighed ap-

proach is applied here, since the weight of software entities

in the overall system and refactorings cost are studied.

Mens et al. [7] propose the techniques to detect the im-

plicit dependencies between refactorings. Their analysis

helped to identify which refactorings are most suitable to

LAN simulation case study. Our approach considers all rel-

evant applying of the studied refactorings to all entities.

Bowman et al. [1] discuss the class responsibility assign-

ment using a multi-objective optimization approach. The

goal is to optimize the coupling and cohesion of a given

class diagram based on five distinct measures [1]. Although

a single objective optimization problem suggests a unique

optimal solution, the approach proposed by the authors of-

fers a large set of solutions that, when evaluated, produces

vectors whose components represent tradeoffs in the objec-

tive space. Similar to this we focus on two objectives. We

study the final effect of the applied refactorings but we pay

attention to the involved costs too. In this way we try to ob-

tain a solution that is acceptable, with a positive impact on

the internal structure of the source code and with low costs

too.

8. Conclusions and Future work

The paper defines the MOERSSP by treating the cost

constraint as an objective and combining it with the effect

objective. The results of a proposed weighted objective

genetic algorithm on an experimental didactic case study

are presented and discussed. Furthermore, a thoroughly

study will address a larger set of objectives, greater than

two which is presented here. Furthermore, a thoroughly

study will address a larger set of objectives, greater than

two which is presented here.

The Pareto approach is a further step in current research

since it proves to be more suitable when it is difficult to

combine several objectives into a single aggregated fitness

function. More, the cost may be interpreted as a constraint,

with the further consequences. A future aspect to be studied

is the identification of the most appropriate subset of refac-

torings that may be applied to each software entity in order

to satisfy the nominated objectives.

References

[1] M. Bowman, L.C. Briand, Y. Labiche, Multi-Objective

Genetic Algorithms to Support Class Responsibility Assign-

ment, 23rd IEEE International Conference on Software

Maintenance (ICSM 2007), October 2-5, 2007, Paris, France

pp. 135-144.

[2] C. Chisăliţă–Creţu, A. Vescan, The Multi-objective Refac-

toring Selection Problem, in Proceedings of the Interna-

tional Conference on Knowledge Engineering, Principles

and Techniques (KEPT2009), Cluj-Napoca, Romania, July

24, 2009, pp.249-253.

[3] S. Demeyer, D. Janssens, T. Mens, Simulation of a

LAN, Electronic Notes in Theoretical Computer Science,

72 (2002), pp. 34-56.

[4] D. Fatiregun, M. Harman, R. Hierons, Evolving trans-

formation sequences using genetic algorithms, in 4th In-

ternational Workshop on Source Code Analysis and Manip-

ulation (SCAM 04), Los Alamitos, California, USA, IEEE

Computer Society Press, 2004, pp. 65-74.

[5] M. Fowler. Refactoring: Improving the Design of Existing

Software. Addison Wesley, 1999.

[6] Y. Kim, O.L. deWeck, Adaptive weighted-sum method for

bi-objective optimization: Pareto front generation, in Struc-

tural and Multidisciplinary Optimization, MIT Strategic En-

gineering Publications, 29(2), 2005, pp. 149-158.

[7] T. Mens, G. Taentzer, O. Runge, Analysing refactoring de-

pendencies using graph transformation, Software and Sys-

tem Modeling, 6(3), 2007, pp. 269-285.

[8] O. Seng, J. Stammel, D. Burkhart, Search-based deter-

mination of refactorings for improving the class structure

of object-oriented systems, in Proceedings of the 8th An-

nual Conference on Genetic and Evolutionary Computation,

M. Keijzer, M. Cattolico, eds., vol. 2, ACM Press, Seattle,

Washington, USA, 2006, pp. 1909-1916.

[9] E. Zitzler, M. Laumanss, L. Thiele, SPEA2: Improv-

ing the Strength Pareto Evolutionary Algorithm, Computer

Engineering and Networks Laboratory, Technical Report,

103(2001), pp. 5-30.

12


