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Abstract

This paper presents a numerical method for the approxi-

mate solution of a first order iterative functional-differential

equations. This method is essentially based on the the nat-

ural spline functions of even degree introduced by using the

derivative- interpolating conditions on simple knots.

1 Introduction

Spline theory is nowadays a very active field of approxi-

mation theory and many desirable advantages exist for dif-

ferential equations problems. Since they are easy to evalu-

ate and manipulate on computer a lot of applications in the

numerical solution of a variety of problem in applied math-

ematics have been found.

The spline functions of even degree are defined in a sim-

ilar manner with that for odd degree spline functions, but

using the derivative-interpolating conditions. These spline

functions preserve all the remarkable extremal and conver-

gence properties of the odd degree splines and are very suit-

able for the numerical solutions of the differential equation

problems.

In this paper we consider a spline approximation method

for the numerical solutions of first order iterative functional-

differential equations. For details of the theory of spline

functions of even degree we refer to the monographs [6],

[10] and for an exhaustive literature on spline functions and

their applications we refer to [1], [2], [3]. The purpose of

the present study is to extend the results of [5], [8], [9] for

the first order iterative functional-differential equations. We

shall develop some theory, algorithms and a very efficient

procedure to use this spline functions of even degree for the

numerical solutions of this class of differential equations.

2 Basic definitions and properties of even de-

gree splines

Let ∆n be the following partition of the real axis

∆n : −∞ = t0 < a = t1 < ... < tn = b < tn+1 = +∞

and let m, n be two given natural numbers, satisfying the

conditions n ≥ 1, m ≤ n + 1. One denotes by Ik the

following subintervals

Ik := [tk, tk+1[, k = 1, n, I0 :=]t0, t1[.

Following [2] we present some definitions and theorems.

Definition 1. For the couple (m,∆n) a function s : R → R

is called a natural spline function of even degree 2m if the

following conditions are satisfied:

10 s ∈ C2m−1(R),
20 s |Ik

∈ P2m, k = 1, n,

30 s |I0
∈ Pm, s |In

∈ Pm,

where Pk represents the set of algebraic polynomials of

degree ≤ k.

We denote by S2m(∆n) the linear space of natural poly-

nomial splines of even degree 2m with the simple knots

t1, ..., tn.

We now show that S2m(∆m) is a finite dimensional lin-

ear space of functions and we give a basis of it.

Theorem 1. Any element s ∈ S2m(∆n) has the following

representation

s(t) =

m∑

i=0

Ait
i +

n∑

k=1

ak(t − tk)2m
+ ,

where the real coefficients (Ai)
m
0 are arbitrary, and the co-

efficients (ak)n
1 satisfy the conditions

n∑

k=1

aktik = 0, i = 0,m − 1.
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Remark 1. If n + 1 = m, then ak = 0, k = 1, n.

Theorem 2. Suppose that n+1 ≥ m, and let f : [t1, tn] →
R be a given function such that f ′(tk) = y′

k, k = 1, n, and

f(t1) = y1, where y′
k, k = 1, n, and y1 are given real

numbers. Then there exists a unique spline function sf ∈
S2m(∆n), such that the following derivative-interpolating

conditions

sf (t1) = y1, (1)

s′f (tk) = y′
k, k = 1, n, (2)

hold.

Corollary 1. There exists a unique set of n+1 fundamental

natural polynomial spline functions Sk ∈ S2m(∆n), k =
1, n, and s0 ∈ S2m(∆n) satisfying the conditions:

s0(t1) = 1, s′0(tk) = 0, k = 1, n,

Sk(t1) = 0, S′
k(ti) = δik, i, k = 1, n.

It is clear that the functions {s0, Sk, k = 1, n}, form a

basis of the linear space S2m(∆n), and for sf we obtain the

representation

sf (t) = s0(t)f(t1) +

n∑

k=1

Sk(t)f ′(tk).

But because s0(t) = 1, it follows that

sf (t) = f(t1) +
n∑

k=1

Sk(t)f ′(tk).

Let us introduce the following sets of functions

Wm+1
2 (∆n) := {g : [a, b] → R | g(m)

abs.cont.on Ik and g(m+1) ∈ L2[a, b]},
Wm+1

2 [a, b] := {g : [a, b] → R | g(m)

abs.cont.on[a, b] and g(m+1) ∈ L2[a, b]},
Wm+1

2,
0

f

(∆n) := {g ∈ Wm+1
2 (∆n) | g′(tk) = f ′(tk)},

Wm+1
2,f (∆n) := {g ∈ Wm+1

2 (∆n) | g(t0) = f(t0)}.

Theorem 3. (Minimal norm property). If s ∈ S2m(∆n) ∩
Wm+1

2,
0

f

(∆n), then

∥∥∥s(m+1)
∥∥∥

2
≤

∥∥∥g(m+1)
∥∥∥

2
, ∀g ∈ Wm+1

2,
0

f

(∆n),

holds, ‖·‖2 being the usual L2-norm.

For any function f ∈ Wm+1
2 (∆n), we have the follow-

ing corollaries.

Corollary 2.

∥∥∥f (m+1)
∥∥∥

2

2
=

∥∥∥s
(m+1)
f

∥∥∥
2

2
+

∥∥∥f (m+1) − s
(m+1)
f

∥∥∥
2

2
.

Corollary 3.

∥∥∥s
(m+1)
f

∥∥∥
2
≤

∥∥f (m+1)
∥∥

2
.

Corollary 4.

∥∥∥f (m+1) − s
(m+1)
f

∥∥∥
2
≤

∥∥f (m+1)
∥∥

2
.

Remark 2. If s̃ := sf + pm, where pm ∈ Pm, it follows∥∥s̃(m+1)
∥∥

2
≤

∥∥f (m+1)
∥∥

2
.

Theorem 4. (Best approximation property). If f ∈
Wm+1

2 (∆n) and sf ∈ S2m(∆n) is the derivative-

interpolating spline function of even degree, then, for any

s ∈ S2m(∆n) the relation

∥∥∥s
(m+1)
f − f (m+1)

∥∥∥
2
≤

∥∥∥s(m+1) − f (m+1)
∥∥∥

2

holds.

Remark 3. If sf − s ∈ Pm then

∥∥∥s
(m+1)
f − f (m+1)

∥∥∥
2

=
∥∥∥s(m+1) − f (m+1)

∥∥∥
2
.

3 The numerical solutions of first order it-

erative functional-differential equations by

spline functions of even degree

Let us consider the following iterative functional-

differential problem

y′(t) = f(t, y(t), y(y(t))), a ≤ t ≤ b, (3)

y(t) = ϕ(t), a1 ≤ t ≤ a, (4)

with the following assumptions:

(C1) a, b, a1 ∈ R, a1 ≤ a < b;

(C2) f ∈ C([a, b] × [a1, b]
2, R);

(C3) ϕ ∈ C([a1, a], [a1, b]).

By a solution of the problem (3)–(4) we understand a

function y ∈ C([a1, b], [a1, b]) ∩ C1([a, b], [a1, b]) which

satisfies (3)–(4).

We suppose that f : [a, b] × [a1, b]
2 → R satisfies all

the conditions assuring the existence and uniqueness of the

solution y of the problem (3)–(4).

We propose an algorithm to approximate the solution y

of the problem (3)–(4) by spline functions of even degree

s ∈ S2m(∆n), where ∆n is a partition of [a, b] and m,n are

two integers satisfying the conditions n ≥ 1 and m ≤ n+1.

Theorem 5. If y is the exact solution of the problem (3)–(4),

then, there exists a unique spline function sy ∈ S2m(∆n)
such that:

sy(t1) = y(t1) = ϕ(t1),
s′y(tk) = y′(tk), k = 1, n,

(5)

35



The assertion of this theorem is a direct consequence of

Theorem 2 by substituting t1 by a and f by y.

Denoting yk := y(tk) and yk = y(y(tk)), k = 1, n, we

have
sy(t1) = y1

s′y(tk) = f(tk, yk, yk), k = 1, n.

Corollary 5. If the functions {s0, Sk, k = 1, n} are the fun-

damental spline functions in S2m(∆n), then we can write

sy(t) = ϕ(a) +

n∑

k=1

Sk(t)f(tk, yk, yk), y ∈ [a, b]. (6)

The unknown values yk, yk, k = 1, n are to be deter-

mined as we shall show later. Before giving an algorithm to

determine these values, we shall give the following estima-

tion error and convergence theorem (see [2]).

Theorem 6. If y ∈ Wm+1
2 [a, b] is the exact solutions of the

problem (3)–(4) and sy is the spline approximating solution

for y, the following estimations hold:
∥∥∥y(k) − s(k)

y

∥∥∥
∞

≤
√

m(m − 1)...k∆
m−k+ 1

2

n

∥∥∥y(m+1)
∥∥∥

2
,

for k = 1, 2, ...,m, where ‖∆n‖ := max
i=2,n

{ti − ti−1}.

Corollary 6. If y ∈ Wm+1
2 [a, b], we have

‖y − sy‖∞ ≤ (b− a)
√

m(m− 1)!
∥∥∥y(m+1)

∥∥∥
2
‖∆n‖m− 1

2 .

Corollary 7. lim
‖∆n‖→0

∥∥∥y(k) − s
(k)
y

∥∥∥
∞

= 0, k = 1,m.

4 Effective development of the algorithm

For any t ∈ [a, b], we suppose that y(t) ≈ sy(t).
If we denote, as usual, e(t) := y(t)−sy(t), t ∈ [a, b],we

have

|e(t)| ≤
√

m(m − 1)! ‖∆n‖m− 1

2

∥∥∥y(m+1)
∥∥∥

2
,

or

|e(t)| = O(‖∆n‖m− 1

2 ), ∀t ∈ [a, b].

If we denote

wi := sy(ti), ei := e(ti) = y(ti) − sy(ti), i = 1, n,

wi := y(sy(ti)), ei := e(ti) = y(y(ti)) − y(sy(ti)),

i = 1, n, then we have yi = wi + ei, yi = wi + ei where

wi = y1 +

n∑

k=1

Sk(ti)f(tk, wk + ek, wk + ek), i = 1, n,

(7)

wi = y

(
y1 +

n∑

k=1

Sk(ti)f(tk, wk + ek, wk + ek)

)
,

i = 1, n. In what follows, we suppose that in (3)–(4) the

functions f : D ⊂ R
4 → R (D ⊂ [a, b] × R

3),

∂f(t, u, v)

∂u
,

∂f(t, u, v)

∂v

are continuous. Thus,

f(tk, yk, yk) = f(tk, wk + ek, wk + ek)

= f(tk, wk, wk) + ek

∂f(tk, ξk, ηk)

∂u
+

+ ek

∂f(tk, ξk, ηk)

∂v

where

min(wk, wk + ek) < ξk < max(wk, wk + ek),

min(wk, wk + ek) < ηk < max(wk, wk + ek).

We can write the system (7) in the form

wi = y1 +

n∑

k=1

Sk(ti)f(tk, wk + ek, wk + ek) + Ei,

i = 1, n,

wi = y

(
y1 +

n∑

k=1

Sk(ti)f(tk, wk + ek, wk + ek)

)
+ Ei,

i = 1, n,

where

Ei =

n∑

k=1

Sk(ti)ek

∂f(tk, ξk, ηk)

∂u
+

+

n∑

k=1

Sk(ti)ek

∂f(tk, ξk, ηk)

∂v
= O(‖∆n‖m− 1

2 ),

Ei = y

(
n∑

k=1

Sk(ti)ek

∂f(tk, ξk, ηk)

∂u
+

+

n∑

k=1

Sk(ti)ek

∂f(tk, ξk, ηk)

∂v

)
= O(‖∆n‖m− 1

2 ),

supposing that

∣∣∣∣
∂f(t, u, v)

∂u

∣∣∣∣ ≤ M,

∣∣∣∣
∂f(t, u, v)

∂v

∣∣∣∣ ≤ N (8)

on D. Obviously, Ei → 0 and Ei → 0 for ‖∆n‖ → 0.

Now, we have to solve the following nonlinear system:





wi = y1 +
n∑

k=1

Sk(ti)f(tk, wk, wk), i = 1, n,

wi = y

(
y1 +

n∑
k=1

Sk(ti)f(tk, wk, wk)

)
, i = 1, n .

(9)
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Let us denote:

w := (w1, ..., wn), w := (w1, ..., wn), W = (w, w),

Hi(w, w) := y1 +
n∑

k=1

Sk(ti)f(tk, wk, wk), i = 1, n,

Hi(w, w) := y

(
y1 +

n∑

k=1

Sk(ti)f(tk, wk, wk)

)

H(W ) := H(w, w)

:= (H1(w, w), ..., Hn(w, w), H1(w, w), ...,Hn(w, w))

and

A =




∂H1(w,w)
∂w1

...
∂H1(w,w)

∂wn

...
∂H1(w,w)

∂wn

... ... ... ... ...
∂Hn(w,w)

∂w1

...
∂Hn(w,w)

∂wn

...
∂Hn(w,w)

∂wn

∂H1(w,w)
∂w1

...
∂H1(w,w)

∂wn

...
∂H1(w,w)

∂wn

... ... ... ... ...
∂Hn(w,w)

∂w1

...
∂Hn(w,w)

∂wn

...
∂Hn(w,w)

∂wn




Shortly, we write the system (9) by

W = H(W ). (10)

In order to investigate the solvability of the nonlinear sys-

tem (10) we shall use a classical theorem.

Theorem 7. Let Ω ⊂ R
2n+2 be a bounded domain and let

H :Ω → Ω be a vector function defined by

W = (w, w) 7−→ (H1(w, w), ..., Hn(w, w),

H1(w, w), ...,Hn(w, w)) = H(W ).

If the functions H , and
∂H

∂W
, are continuous in Ω, then

there exists in Ω a fixed point W ∗ of H , i.e. W ∗ =
H(W ∗), which can be found by iterations. W ∗ =
lim

n→∞
W (n), W (k) := H(W (k−1)), k = 1, 2, ..., W (0) ∈

Ω (arbitrary). If in addition ‖A‖ ≤ L < 1, for any iteration

W (k), the following estimation holds:

∥∥∥W − W (k)
∥∥∥ ≤ Lk

1 − L

∥∥∥W (1) − W (0)
∥∥∥ .

Taking in consideration the expression of H , the matrix

A is A = SF , where

S =




S1(t1) · · · Sn(t1) · · · Sn(t1)
· · · · · · · · · · · · · · ·

S1(tn) · · · Sn(tn) · · · Sn(tn)
y (S1(t1)) · · · y (Sn(t1)) · · · y (Sn(t1))

· · · · · · · · · · · · · · ·
y (S1(tn)) · · · y (Sn(tn)) · · · y (Sn(tn))




and F is the diagonal matrix with the following elements:

∂f(tk, wk, wk)

∂wk

,
∂f(tk, wk, wk)

∂wk

, k = 1, n.

Theorem 8. Suppose that there exists the constants M, N

such that (8) holds and

|f(t, u, v)| ≤ P, ∀(t, u, v) ∈ D.

If M ≤ ‖S‖−1
, then the system (9) has a solution which

can be found by iterations.
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