Numerical solutions of first order iterative functional-differential equations by spline functions of even degree

Nicola Oprea
"Petru Maior" University of Tîrgu Mureş, Romania
Nicolae Iorga street nr. 1, 540088
noprea@engineering.upm.ro

Abstract

This paper presents a numerical method for the approximate solution of a first order iterative functional-differential equations. This method is essentially based on the the natural spline functions of even degree introduced by using the derivative- interpolating conditions on simple knots.

1 Introduction

Spline theory is nowadays a very active field of approximation theory and many desirable advantages exist for differential equations problems. Since they are easy to evaluate and manipulate on computer a lot of applications in the numerical solution of a variety of problem in applied mathematics have been found.

The spline functions of even degree are defined in a similar manner with that for odd degree spline functions, but using the derivative-interpolating conditions. These spline functions preserve all the remarkable extremal and convergence properties of the odd degree splines and are very suitable for the numerical solutions of the differential equation problems.

In this paper we consider a spline approximation method for the numerical solutions of first order iterative functionaldifferential equations. For details of the theory of spline functions of even degree we refer to the monographs [6], [10] and for an exhaustive literature on spline functions and their applications we refer to [1], [2], [3]. The purpose of the present study is to extend the results of [5], [8], [9] for the first order iterative functional-differential equations. We shall develop some theory, algorithms and a very efficient procedure to use this spline functions of even degree for the numerical solutions of this class of differential equations.

2 Basic definitions and properties of even degree splines

Let Δ_{n} be the following partition of the real axis

$$
\Delta_{n}:-\infty=t_{0}<a=t_{1}<\ldots<t_{n}=b<t_{n+1}=+\infty
$$

and let m, n be two given natural numbers, satisfying the conditions $n \geq 1, m \leq n+1$. One denotes by I_{k} the following subintervals

$$
I_{k}:=\left[t_{k}, t_{k+1}\left[, k=\overline{1, n}, I_{0}:=\right] t_{0}, t_{1}[.\right.
$$

Following [2] we present some definitions and theorems.
Definition 1. For the couple $\left(m, \Delta_{n}\right)$ a function $s: \mathbb{R} \rightarrow \mathbb{R}$ is called a natural spline function of even degree $2 m$ if the following conditions are satisfied:
$1^{0} s \in C^{2 m-1}(\mathbb{R})$,
$\left.2^{0} s\right|_{I_{k}} \in \mathcal{P}_{2 m}, k=\overline{1, n}$,
$\left.3^{0} s\right|_{I_{0} \in \mathcal{P}_{m},\left.s\right|_{I_{n}} \in \mathcal{P}_{m}, ~}$
where \mathcal{P}_{k} represents the set of algebraic polynomials of degree $\leq k$.

We denote by $\mathcal{S}_{2 m}\left(\Delta_{n}\right)$ the linear space of natural polynomial splines of even degree $2 m$ with the simple knots t_{1}, \ldots, t_{n}.

We now show that $\mathcal{S}_{2 m}\left(\Delta_{m}\right)$ is a finite dimensional linear space of functions and we give a basis of it.

Theorem 1. Any element $s \in \mathcal{S}_{2 m}\left(\Delta_{n}\right)$ has the following representation

$$
s(t)=\sum_{i=0}^{m} A_{i} t^{i}+\sum_{k=1}^{n} a_{k}\left(t-t_{k}\right)_{+}^{2 m}
$$

where the real coefficients $\left(A_{i}\right)_{0}^{m}$ are arbitrary, and the coefficients $\left(a_{k}\right)_{1}^{n}$ satisfy the conditions

$$
\sum_{k=1}^{n} a_{k} t_{k}^{i}=0, i=\overline{0, m-1}
$$

Remark 1. If $n+1=m$, then $a_{k}=0, k=\overline{1, n}$.
Theorem 2. Suppose that $n+1 \geq m$, and let $f:\left[t_{1}, t_{n}\right] \rightarrow$ \mathbb{R} be a given function such that $f^{\prime}\left(t_{k}\right)=y_{k}^{\prime}, k=\overline{1, n}$, and $f\left(t_{1}\right)=y_{1}$, where $y_{k}^{\prime}, k=\overline{1, n}$, and y_{1} are given real numbers. Then there exists a unique spline function $s_{f} \in$ $\mathcal{S}_{2 m}\left(\Delta_{n}\right)$, such that the following derivative-interpolating conditions

$$
\begin{gather*}
s_{f}\left(t_{1}\right)=y_{1} \tag{1}\\
s_{f}^{\prime}\left(t_{k}\right)=y_{k}^{\prime}, k=\overline{1, n} \tag{2}
\end{gather*}
$$

hold.
Corollary 1. There exists a unique set of $n+1$ fundamental natural polynomial spline functions $S_{k} \in \mathcal{S}_{2 m}\left(\Delta_{n}\right), k=$ $\overline{1, n}$, and $s_{0} \in \mathcal{S}_{2 m}\left(\Delta_{n}\right)$ satisfying the conditions:

$$
\begin{array}{lll}
s_{0}\left(t_{1}\right)=1, & s_{0}^{\prime}\left(t_{k}\right)=0, & k=\overline{1, n} \\
S_{k}\left(t_{1}\right)=0, & S_{k}^{\prime}\left(t_{i}\right)=\delta_{i k}, & i, k=\overline{1, n}
\end{array}
$$

It is clear that the functions $\left\{s_{0}, S_{k}, k=\overline{1, n}\right\}$, form a basis of the linear space $\mathcal{S}_{2 m}\left(\Delta_{n}\right)$, and for s_{f} we obtain the representation

$$
s_{f}(t)=s_{0}(t) f\left(t_{1}\right)+\sum_{k=1}^{n} S_{k}(t) f^{\prime}\left(t_{k}\right)
$$

But because $s_{0}(t)=1$, it follows that

$$
s_{f}(t)=f\left(t_{1}\right)+\sum_{k=1}^{n} S_{k}(t) f^{\prime}\left(t_{k}\right)
$$

Let us introduce the following sets of functions

$$
\begin{aligned}
& W_{2}^{m+1}\left(\Delta_{n}\right):=\left\{g:[a, b] \rightarrow \mathbb{R} \mid g^{(m)}\right. \\
& \text { abs.cont.on } \left.I_{k} \text { and } g^{(m+1)} \in L_{2}[a, b]\right\}, \\
& W_{2}^{m+1}[a, b]:=\left\{g:[a, b] \rightarrow \mathbb{R} \mid g^{(m)}\right. \\
& \text { abs.cont.on } \left.[a, b] \text { and } g^{(m+1)} \in L_{2}[a, b]\right\}, \\
& W_{2, f}^{m+1}\left(\Delta_{n}\right):=\left\{g \in W_{2}^{m+1}\left(\Delta_{n}\right) \mid g^{\prime}\left(t_{k}\right)=f^{\prime}\left(t_{k}\right)\right\}, \\
& W_{2, f}^{m+1}\left(\Delta_{n}\right):=\left\{g \in W_{2}^{m+1}\left(\Delta_{n}\right) \mid g\left(t_{0}\right)=f\left(t_{0}\right)\right\} .
\end{aligned}
$$

Theorem 3. (Minimal norm property). If $s \in \mathcal{S}_{2 m}\left(\Delta_{n}\right) \cap$ $W_{\substack{0 \\ 2, f}}^{m+1}\left(\Delta_{n}\right)$, then

$$
\left\|s^{(m+1)}\right\|_{2} \leq\left\|g^{(m+1)}\right\|_{2}, \forall g \in W_{\substack{0, f \\ 2, f}}^{m+1}\left(\Delta_{n}\right)
$$

holds, $\|\cdot\|_{2}$ being the usual L_{2}-norm.
For any function $f \in W_{2}^{m+1}\left(\Delta_{n}\right)$, we have the following corollaries.

Corollary 2.

$$
\left\|f^{(m+1)}\right\|_{2}^{2}=\left\|s_{f}^{(m+1)}\right\|_{2}^{2}+\left\|f^{(m+1)}-s_{f}^{(m+1)}\right\|_{2}^{2}
$$

Corollary 3. $\left\|s_{f}^{(m+1)}\right\|_{2} \leq\left\|f^{(m+1)}\right\|_{2}$.
Corollary 4. $\left\|f^{(m+1)}-s_{f}^{(m+1)}\right\|_{2} \leq\left\|f^{(m+1)}\right\|_{2}$.
Remark 2. If $\widetilde{s}:=s_{f}+p_{m}$, where $p_{m} \in \mathcal{P}_{m}$, it follows $\left\|\widetilde{s}^{(m+1)}\right\|_{2} \leq\left\|f^{(m+1)}\right\|_{2}$.

Theorem 4. (Best approximation property). If $f \in$ $W_{2}^{m+1}\left(\Delta_{n}\right)$ and $s_{f} \in \mathcal{S}_{2 m}\left(\Delta_{n}\right)$ is the derivativeinterpolating spline function of even degree, then, for any $s \in \mathcal{S}_{2 m}\left(\Delta_{n}\right)$ the relation

$$
\left\|s_{f}^{(m+1)}-f^{(m+1)}\right\|_{2} \leq\left\|s^{(m+1)}-f^{(m+1)}\right\|_{2}
$$

holds.
Remark 3. If $s_{f}-s \in \mathcal{P}_{m}$ then

$$
\left\|s_{f}^{(m+1)}-f^{(m+1)}\right\|_{2}=\left\|s^{(m+1)}-f^{(m+1)}\right\|_{2}
$$

3 The numerical solutions of first order iterative functional-differential equations by spline functions of even degree

Let us consider the following iterative functionaldifferential problem

$$
\begin{gather*}
y^{\prime}(t)=f(t, y(t), y(y(t))), a \leq t \leq b, \tag{3}\\
y(t)=\varphi(t), a_{1} \leq t \leq a, \tag{4}
\end{gather*}
$$

with the following assumptions:
$\left(\mathrm{C}_{1}\right) a, b, a_{1} \in \mathbb{R}, a_{1} \leq a<b ;$
$\left(\mathrm{C}_{2}\right) f \in C\left([a, b] \times\left[a_{1}, b\right]^{2}, \mathbb{R}\right) ;$
$\left(\mathrm{C}_{3}\right) \varphi \in C\left(\left[a_{1}, a\right],\left[a_{1}, b\right]\right)$.
By a solution of the problem (3)-(4) we understand a function $y \in C\left(\left[a_{1}, b\right],\left[a_{1}, b\right]\right) \cap C^{1}\left([a, b],\left[a_{1}, b\right]\right)$ which satisfies (3)-(4).

We suppose that $f:[a, b] \times\left[a_{1}, b\right]^{2} \rightarrow \mathbb{R}$ satisfies all the conditions assuring the existence and uniqueness of the solution y of the problem (3)-(4).

We propose an algorithm to approximate the solution y of the problem (3)-(4) by spline functions of even degree $s \in \mathcal{S}_{2 m}\left(\Delta_{n}\right)$, where Δ_{n} is a partition of $[a, b]$ and m, n are two integers satisfying the conditions $n \geq 1$ and $m \leq n+1$.

Theorem 5. If y is the exact solution of the problem (3)-(4), then, there exists a unique spline function $s_{y} \in \mathcal{S}_{2 m}\left(\Delta_{n}\right)$ such that:

$$
\begin{align*}
& s_{y}\left(t_{1}\right)=y\left(t_{1}\right)=\varphi\left(t_{1}\right) \tag{5}\\
& s_{y}^{\prime}\left(t_{k}\right)=y^{\prime}\left(t_{k}\right), k=\overline{1, n}
\end{align*}
$$

The assertion of this theorem is a direct consequence of Theorem 2 by substituting t_{1} by a and f by y.

Denoting $y_{k}:=y\left(t_{k}\right)$ and $\bar{y}_{k}=y\left(y\left(t_{k}\right)\right), k=\overline{1, n}$, we have

$$
\begin{aligned}
& s_{y}\left(t_{1}\right)=y_{1} \\
& s_{y}^{\prime}\left(t_{k}\right)=f\left(t_{k}, y_{k}, \bar{y}_{k}\right), k=\overline{1, n} .
\end{aligned}
$$

Corollary 5. If the functions $\left\{s_{0}, S_{k}, k=\overline{1, n}\right\}$ are the fundamental spline functions in $\mathcal{S}_{2 m}\left(\Delta_{n}\right)$, then we can write

$$
\begin{equation*}
s_{y}(t)=\varphi(a)+\sum_{k=1}^{n} S_{k}(t) f\left(t_{k}, y_{k}, \bar{y}_{k}\right), y \in[a, b] \tag{6}
\end{equation*}
$$

The unknown values $y_{k}, \bar{y}_{k}, k=\overline{1, n}$ are to be determined as we shall show later. Before giving an algorithm to determine these values, we shall give the following estimation error and convergence theorem (see [2]).
Theorem 6. If $y \in W_{2}^{m+1}[a, b]$ is the exact solutions of the problem (3)-(4) and s_{y} is the spline approximating solution for y, the following estimations hold:
$\left\|y^{(k)}-s_{y}^{(k)}\right\|_{\infty} \leq \sqrt{m}(m-1) \ldots k \Delta_{n}^{m-k+\frac{1}{2}}\left\|y^{(m+1)}\right\|_{2}$, for $k=1,2, \ldots, m$, where $\left\|\Delta_{n}\right\|:=\max _{i=2, n}\left\{t_{i}-t_{i-1}\right\}$.
Corollary 6. If $y \in W_{2}^{m+1}[a, b]$, we have
$\left\|y-s_{y}\right\|_{\infty} \leq(b-a) \sqrt{m}(m-1)!\left\|y^{(m+1)}\right\|_{2}\left\|\Delta_{n}\right\|^{m-\frac{1}{2}}$.
Corollary 7. $\lim _{\left\|\Delta_{n}\right\| \rightarrow 0}\left\|y^{(k)}-s_{y}^{(k)}\right\|_{\infty}=0, k=\overline{1, m}$.

4 Effective development of the algorithm

For any $t \in[a, b]$, we suppose that $y(t) \approx s_{y}(t)$.
If we denote, as usual, $e(t):=y(t)-s_{y}(t), t \in[a, b]$, we have

$$
|e(t)| \leq \sqrt{m}(m-1)!\left\|\Delta_{n}\right\|^{m-\frac{1}{2}}\left\|y^{(m+1)}\right\|_{2}
$$

or

$$
|e(t)|=O\left(\left\|\Delta_{n}\right\|^{m-\frac{1}{2}}\right), \forall t \in[a, b]
$$

If we denote

$$
\begin{aligned}
& w_{i}:=s_{y}\left(t_{i}\right), \quad e_{i}:=e\left(t_{i}\right)=y\left(t_{i}\right)-s_{y}\left(t_{i}\right), i=\overline{1, n} \\
& \bar{w}_{i}:=y\left(s_{y}\left(t_{i}\right)\right), \quad \bar{e}_{i}:=\bar{e}\left(t_{i}\right)=y\left(y\left(t_{i}\right)\right)-y\left(s_{y}\left(t_{i}\right)\right)
\end{aligned}
$$

$i=\overline{1, n}$, then we have $y_{i}=w_{i}+e_{i}, \bar{y}_{i}=\bar{w}_{i}+\bar{e}_{i}$ where $w_{i}=y_{1}+\sum_{k=1}^{n} S_{k}\left(t_{i}\right) f\left(t_{k}, w_{k}+e_{k}, \bar{w}_{k}+\bar{e}_{k}\right), i=\overline{1, n}$,

$$
\begin{equation*}
\bar{w}_{i}=y\left(y_{1}+\sum_{k=1}^{n} S_{k}\left(t_{i}\right) f\left(t_{k}, w_{k}+e_{k}, \bar{w}_{k}+\bar{e}_{k}\right)\right) \tag{7}
\end{equation*}
$$

$i=\overline{1, n}$. In what follows, we suppose that in (3)-(4) the functions $f: D \subset \mathbb{R}^{4} \rightarrow \mathbb{R}\left(D \subset[a, b] \times \mathbb{R}^{3}\right)$,

$$
\frac{\partial f(t, u, v)}{\partial u}, \frac{\partial f(t, u, v)}{\partial v}
$$

are continuous. Thus,

$$
\begin{aligned}
f\left(t_{k}, y_{k}, \bar{y}_{k}\right) & =f\left(t_{k}, w_{k}+e_{k}, \bar{w}_{k}+\bar{e}_{k}\right) \\
& =f\left(t_{k}, w_{k}, \bar{w}_{k}\right)+e_{k} \frac{\partial f\left(t_{k}, \xi_{k}, \eta_{k}\right)}{\partial u}+ \\
& +\bar{e}_{k} \frac{\partial f\left(t_{k}, \xi_{k}, \eta_{k}\right)}{\partial v}
\end{aligned}
$$

where

$$
\begin{aligned}
& \min \left(w_{k}, w_{k}+e_{k}\right)<\xi_{k}<\max \left(w_{k}, w_{k}+e_{k}\right) \\
& \min \left(\bar{w}_{k}, \bar{w}_{k}+\bar{e}_{k}\right)<\eta_{k}<\max \left(\bar{w}_{k}, \bar{w}_{k}+\bar{e}_{k}\right)
\end{aligned}
$$

We can write the system (7) in the form

$$
\begin{aligned}
w_{i} & =y_{1}+\sum_{k=1}^{n} S_{k}\left(t_{i}\right) f\left(t_{k}, w_{k}+e_{k}, \bar{w}_{k}+\bar{e}_{k}\right)+E_{i}, \\
i & =\overline{1, n}, \\
\bar{w}_{i} & =y\left(y_{1}+\sum_{k=1}^{n} S_{k}\left(t_{i}\right) f\left(t_{k}, w_{k}+e_{k}, \bar{w}_{k}+\bar{e}_{k}\right)\right)+\bar{E}_{i}, \\
i & =\overline{1, n},
\end{aligned}
$$

where

$$
\begin{aligned}
E_{i} & =\sum_{k=1}^{n} S_{k}\left(t_{i}\right) e_{k} \frac{\partial f\left(t_{k}, \xi_{k}, \eta_{k}\right)}{\partial u}+ \\
& +\sum_{k=1}^{n} S_{k}\left(t_{i}\right) \bar{e}_{k} \frac{\partial f\left(t_{k}, \xi_{k}, \eta_{k}\right)}{\partial v}=O\left(\left\|\Delta_{n}\right\|^{m-\frac{1}{2}}\right) \\
\bar{E}_{i} & =y\left(\sum_{k=1}^{n} S_{k}\left(t_{i}\right) e_{k} \frac{\partial f\left(t_{k}, \xi_{k}, \eta_{k}\right)}{\partial u}+\right. \\
& \left.+\sum_{k=1}^{n} S_{k}\left(t_{i}\right) \bar{e}_{k} \frac{\partial f\left(t_{k}, \xi_{k}, \eta_{k}\right)}{\partial v}\right)=O\left(\left\|\Delta_{n}\right\|^{m-\frac{1}{2}}\right)
\end{aligned}
$$

supposing that

$$
\begin{equation*}
\left|\frac{\partial f(t, u, v)}{\partial u}\right| \leq M,\left|\frac{\partial f(t, u, v)}{\partial v}\right| \leq N \tag{8}
\end{equation*}
$$

on D. Obviously, $E_{i} \rightarrow 0$ and $\bar{E}_{i} \rightarrow 0$ for $\left\|\Delta_{n}\right\| \rightarrow 0$.
Now, we have to solve the following nonlinear system:

$$
\left\{\begin{array}{l}
w_{i}=y_{1}+\sum_{k=1}^{n} S_{k}\left(t_{i}\right) f\left(t_{k}, w_{k}, \bar{w}_{k}\right), i=\overline{1, n} \tag{9}\\
\bar{w}_{i}=y\left(y_{1}+\sum_{k=1}^{n} S_{k}\left(t_{i}\right) f\left(t_{k}, w_{k}, \bar{w}_{k}\right)\right), i=\overline{1, n}
\end{array}\right.
$$

Let us denote:

$$
\begin{aligned}
& w:=\left(w_{1}, \ldots, w_{n}\right), \bar{w}:=\left(\bar{w}_{1}, \ldots, \bar{w}_{n}\right), W=(w, \bar{w}) \\
& H_{i}(w, \bar{w}):=y_{1}+\sum_{k=1}^{n} S_{k}\left(t_{i}\right) f\left(t_{k}, w_{k}, \bar{w}_{k}\right), i=\overline{1, n} \\
& \bar{H}_{i}(w, \bar{w}):=y\left(y_{1}+\sum_{k=1}^{n} S_{k}\left(t_{i}\right) f\left(t_{k}, w_{k}, \bar{w}_{k}\right)\right) \\
& H(W):=H(w, \bar{w}) \\
& :=\left(H_{1}(w, \bar{w}), \ldots, H_{n}(w, \bar{w}), \bar{H}_{1}(w, \bar{w}), \ldots, \bar{H}_{n}(w, \bar{w})\right)
\end{aligned}
$$

and

$$
A=\left(\begin{array}{ccccc}
\frac{\partial H_{1}(w, \bar{w})}{\partial w_{1}} & \ldots & \frac{\partial H_{1}(w, \bar{w})}{\partial w_{n}} & \ldots & \frac{\partial H_{1}(w, \bar{w})}{\partial \bar{w}_{n}} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\frac{\partial H_{n}(w, \bar{w})}{\partial w_{1}} & \ldots & \frac{\partial H_{n}(w, \bar{w})}{\partial w_{n}} & \ldots & \frac{\partial H_{n}(w, \bar{w})}{\partial \bar{w}_{n}} \\
\frac{\partial \bar{H}_{1}(w, \bar{w})}{\partial w_{1}} & \ldots & \frac{\partial \bar{H}_{1}(w, \bar{w})}{\partial w_{n}} & \ldots & \frac{\partial \bar{H}_{1}(w, \bar{w})}{\partial \bar{w}_{n}} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\frac{\partial \bar{H}_{n}(w, \bar{w})}{\partial w_{1}} & \ldots & \frac{\partial \bar{H}_{n}(w, \bar{w})}{\partial w_{n}} & \ldots & \frac{\partial \bar{H}_{n}(w, \bar{w})}{\partial \bar{w}_{n}}
\end{array}\right)
$$

Shortly, we write the system (9) by

$$
\begin{equation*}
W=H(W) \tag{10}
\end{equation*}
$$

In order to investigate the solvability of the nonlinear system (10) we shall use a classical theorem.

Theorem 7. Let $\Omega \subset \mathbb{R}^{2 n+2}$ be a bounded domain and let $H: \Omega \rightarrow \Omega$ be a vector function defined by

$$
\begin{aligned}
W=(w, \bar{w}) \longmapsto & \left(H_{1}(w, \bar{w}), \ldots, H_{n}(w, \bar{w}),\right. \\
& \left.\bar{H}_{1}(w, \bar{w}), \ldots, \bar{H}_{n}(w, \bar{w})\right)=H(W) .
\end{aligned}
$$

If the functions H, and $\frac{\partial H}{\partial W}$, are continuous in Ω, then there exists in Ω a fixed point W^{*} of H, i.e. $W^{*}=$ $H\left(W^{*}\right)$, which can be found by iterations. $W^{*}=$ $\lim _{n \rightarrow \infty} W^{(n)}, W^{(k)}:=H\left(W^{(k-1)}\right), k=1,2, \ldots, W^{(0)} \in$ Ω (arbitrary). If in addition $\|A\| \leq L<1$, for any iteration $W^{(k)}$, the following estimation holds:

$$
\left\|W-W^{(k)}\right\| \leq \frac{L^{k}}{1-L}\left\|W^{(1)}-W^{(0)}\right\|
$$

Taking in consideration the expression of H, the matrix A is $A=S F$, where
$S=\left(\begin{array}{ccccc}S_{1}\left(t_{1}\right) & \cdots & S_{n}\left(t_{1}\right) & \cdots & S_{n}\left(t_{1}\right) \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ S_{1}\left(t_{n}\right) & \cdots & S_{n}\left(t_{n}\right) & \cdots & S_{n}\left(t_{n}\right) \\ y\left(S_{1}\left(t_{1}\right)\right) & \cdots & y\left(S_{n}\left(t_{1}\right)\right) & \cdots & y\left(S_{n}\left(t_{1}\right)\right) \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ y\left(S_{1}\left(t_{n}\right)\right) & \cdots & y\left(S_{n}\left(t_{n}\right)\right) & \cdots & y\left(S_{n}\left(t_{n}\right)\right)\end{array}\right)$
and F is the diagonal matrix with the following elements:

$$
\frac{\partial f\left(t_{k}, w_{k}, \bar{w}_{k}\right)}{\partial w_{k}}, \frac{\partial f\left(t_{k}, w_{k}, \bar{w}_{k}\right)}{\partial \bar{w}_{k}}, k=\overline{1, n} .
$$

Theorem 8. Suppose that there exists the constants M, N such that (8) holds and

$$
|f(t, u, v)| \leq P, \forall(t, u, v) \in D
$$

If $M \leq\|S\|^{-1}$, then the system (9) has a solution which can be found by iterations.

References

[1] H. Akça, Gh. Micula, Numerical solutions of system of differential equation with deviating argument by spline functions, Itinerant seminar of functional equations approximation and convexity, Cluj Napoca, 1990.
[2] P. Blaga, Gh. Micula, Polynomial natural spline functions of even degree, Studia Univ."Babeş-Bolyai", Mathematica 38, 2 (1993), pp. 31-40.
[3] P. Blaga, Gh. Micula, Polynomial spline functions of even degree approximating the solutions of differential equations, Analele Universităţii din Timişoara, Vol. 36, fasc. 2, 1998.
[4] P. Blaga, Gh. Micula, H. Akça, On the use of spline functions of even degree for the numerical solution of the delay differential equations, Calcolo 32, no. 1-2 (1996), pp. 83-101.
[5] E. Egri, On first and second order iterative functionaldifferential equations and systems, Presa Universitară Clujeană, 2008.
[6] Gh. Micula, Funcţii spline și aplicaţii, Editura Tehnicǎ, Bucureşti, 1978.
[7] D. Otrocol, Numerical solutions of Lotka-Volterra system with delay by spline functions of even degree, Studia Univ. "Babeş-Bolyai", Mathematica, 51 (2006), no. 4, 167-180.
[8] D. Otrocol, Iterative functional-differential system with retarded argument, Revue d'Analyse Numérique de l'Approximation, Vol 35 (2006) no. 2, 147-160.
[9] B. Rzepecki, On some functional-differential equations, Glasnik Mat., Vol 19 (1984), 73-82.
[10] L. Schumaker, Spline functions. Basic theory, Wiley, New-York-Chichester-Brisbane-Toronto, 1981

