
Scientific Bulletin of the Petru Maior University of Tirgu Mures  
Vol. 6 (XXIII), 2009 
ISSN 1841-9267 

 

 

Keywords: fuzzy logic controller, Sugeno-Takagi fuzzy 
reasoning, DC drive fuzzy control application 

Rule-bases construction through self-learning for a table-based Sugeno-

Takagi fuzzy logic control system  
 

C. Boldi or, V. Comnac, Member IEEE, S. Coman, A. Acreal! 

Transilvania University of Bra ov, Automation Department 

E-mail: cristian.boldisor@unitbv.ro 

 

 

Abstract
 

A self-learning based methodology for building the 

rule-base of a fuzzy logic controller (FLC) is presented 

and verified, aiming to engage intelligent 

characteristics to a fuzzy logic control systems. The 

methodology is a simplified version of those presented 

in today literature. Some aspects are intentionally 

ignored since it rarely appears in control system 

engineering and a SISO process is considered here. 

The fuzzy inference system obtained is a table-based 

Sugeno-Takagi type. System’s desired performance is 

defined by a reference model and rules are extracted 

from recorded data, after the correct control actions 

are learned.  

The presented algorithm is tested in constructing 

the rule-base of a fuzzy controller for a DC drive 

application. System’s performances and method’s 

viability are analyzed. 

 

 

1. Introduction 
 

As often mentioned in literature today, there are at 

least four main sources for finding and/or fine tuning 

control rules of a fuzzy logic controller in a control 

application ([1], [2], [3], [6], [8]): 

 Based on experience and/or control engineering 

knowledge; 

 Based on an operator’s control actions (which are 

recorded and properly processed); 

 Based on a fuzzy model of the plant (if available) 

or fuzzy identification; 

 Based on complex intelligent techniques such as 

self-learning algorithms and neural networks. 

Practical implementations often use more than one 

of these sources in order to exploit their benefits and 

avoid usual difficulties. As an example, a self-learning 

system can be used for designing the rule-base of the 

FLC, which might be further improved by designer. 

Intelligent techniques (term derived from artificial 

intelligence) are meant to extract fuzzy rules from an 

automatic process of recording and processing data 

that somehow imitates human reasoning. One strategy 

for building a rule-base is by using a self-learning 

algorithm. Shortly, the concept of self-learning control 

system design can be described as follows. By 

introducing a reference model and employing an 

iterative learning scheme, the desired control actions 

are progressively learned by operating the system 

repeatedly. At the same time, the rule-base is formed 

by observing, recording and properly processing the 

learned actions which are used subsequently ([3], [4]). 

No expert or process model would be necessary and 

multiple sources of errors are avoided (such as model 

identification errors). 

It is important to note here that the self-learning 

process is similar to the learning process possessed by 

a human being [4].  

 

2. Modified Sugeno-Takagi fuzzy reasoning 
 

A self-learning system needs to record a number of 

variables in a finite interval of time and process the 

recorded values in order to extract knowledge. 

It is considered very difficult to extract fuzzy rules 

from numerical data. Usually, this is because there is 

no clear relation between numbers (quantitative data) 

and the linguistic terms used by an expert (qualitative 

data). However, from an engineering control point of 

view, it is possible to use a rule-base with rules having 

less linguistic meaning, but having the if-then 

statement form. This leads to a little change in the 

usual fuzzy reasoning scheme ([7]): crisp values 

(which will be further named target values) instead of 

fuzzy sets are initially chosen over the universe of 

discourse for each variable, and a fuzzy set for close to 

linguistic term is used to engage a fuzzy inference 

mechanism (further described). The inference engine 

computes the output by comparing actual inputs with 

some already known values, for which have the correct 

46



outputs. This action is termed pattern matching, where 

patterns are the already known cases or target values. 

Let us consider a simple case: an input variable x  

and an output variable y , with crisp target values jx  

for input. We assume that for every input target value a 

correct, useful value jy  of output is known. Hence, 

for every input value jx , we can enounce a non-fuzzy 

rule with the if-then form: 

if jxx   then jyy   

The robust control objective requires that a system 

would not be extremely sensitive to small changes of 

some parameters or measured variables. Hence, it is 

reasonable to enounce the following fuzzy rule: 

if x  is close to jx  then y  is close to jy  

The close to term is usually defined by a fuzzy set 

usually defined by a triangular membership function 

around the target value. The parameters of the close to 

fuzzy set are chosen in order to fulfill completeness 

condition for a fuzzy rule-base. The close to fuzzy set 

actually produces the fuzziness and defines a norm to 

describe the distance between an actual value *x  and 

the targets jx  for which we know the correct action 

jy . The action *y , taken for *x , will be influenced 

by this norm. 

The small change in the fuzzy reasoning is not on 

the fuzzy inference itself, but on the way the input 

variables are treated: crisp values are chosen over the 

range, instead of fuzzy sets. Finally, the close to term 

produces fuzziness, but fuzzy sets are not clearly 

highlighted from the start (Figure 1): notice that no 

fuzzy sets are depicted. 

Both the universe of discourse and the target values 

for every variable can be chosen based on the recorded 

data from a learning stage. This will increase the 

system’s learning characteristic, which makes it more 

intelligent. In this case, a variable’s range can be 

chosen depending on the maximum recorded value for 

that variable. Afterwards, the adequate target values 

are chosen over the range. It is worth mentioned here 

that the simplest uniform distribution is satisfactory, 

yet could have no relevance in some control 

applications. Better performances in steady-state 

conditions require a more detailed analysis of error 

values close to zero. Hence, we consider that target 

values for the input variables must cover the range but 

should be denser in the close to zero regions. 

In conclusion, non-fuzzy relations between inputs 

and outputs, represented by recorded data, can be the  

 
Fig. 1. A symbolic representation of the fuzzy inference 

mechanism. 

 

basis for building fuzzy rules, and so for the modified 

reasoning scheme. 

 

3. Rule-base construction by self-learning 
 

When it comes to real implementations, the main 

advantages of fuzzy control should be considered, 

along with performances, even during design stage 

([1], [8]). An important and attractive characteristic of 

fuzzy control is that only little explicit knowledge 

regarding the process is needed while designing the 

controller. In other words, design should focus on 

building the rule-base and not on model identification. 

Hence, the main guidelines to be followed while 

designing the FLC would be ([3], [8]): (i) the control 

system should satisfy the desired performance and (ii) 

the required knowledge about the process should be 

kept as little as possible. 

The block diagram of the self-learning system used 

in this paper is shown in Figure 2. The overall system 

is composed of four functional modules: the reference 

model, the learning algorithm, the rule-base formation 

mechanism and the controlled process 

 

3.1. Learning algorithm 
 

The concept of iterative self-learning was initially 

introduced in [4] and further treated from the 

theoretical viewpoint in a considerable amount of 

research papers. As its name implies, the correct 

control actions are learned and desired performance is 

progressively achieved by repeated trial in such a way 

that the modification of the present control is based on 

the error information obtained during previous trial. 

A reference model )(sGref  is used to designate the 

desired performance, defined by time domain indices 

such as overshoot (! ), settling time ( st ) and steady-

state error ( ste ), or alternatively by desired pole 

position in the s-plane. The model can be a low-order 

linear one, with its parameters obtained from given 

performance indices. The output of the model, refy , 

represent the desired process output.  

47



 
Fig. 2. Block diagram of the self-learning system. 

 

The error information used to control the algorithm 

is the learning error, defined as: 

)()()( sksrefsk iTyiTyiT " # , (1) 

where k specifies the current iteration number of the 

algorithm and Ii ,0  is the sample number of all 

signals recorded with the sampling time sT . Notice 

that we have 1$I  values for every recorded variable. 

The learning algorithm is called PID-type update 

law or error correction algorithm, and is defined by: 

)()()( 11 skksksk iTgiTuiTu "" #$  (2) 

where kg  is a learning gain for current iteration. The 

control output is adjusted at every iteration, such that 

the learning error asymptotically tends to zero, or a 

pre-specified small value, max# . The algorithm stops 

(at iteration k) if: 

max

00

)()()( #%# # # &'
  

I

i

sk

I

i

sksk iTiTiT  (3) 

The convergence of the algorithm is proven in [3]. 

In the most simple case, learning gain is constant for 

every iteration, ggk  . A varying gain is possible for 

a better convergence speed control. 

 

3.2. Rule-base construction 
 

In this paper, the proposed method is a simplified 

version for a SISO process. Some aspects were 

intentionally ignored since they can be easily avoided 

or rarely appear in control system engineering. A 

detailed version is presented in [3] where a modified 

fuzzy reasoning scheme introduced in [7] is used, as it 

better accommodates the numerical data set recorded. 

Suppose that, at the K-th learning iteration, the 

correct control action )( sK iTu  is learned so that the 

desired output response specified by the reference 

model is achieved. At the same time, the measured 

error or control error, defined as  

)()()( sKssK iTyiTriTe " , (4) 

is recorded and we have two sets of data, one for 

control action and one for measured error, having 

1$I  values. From )( sK iTe  data set we can obtain the 

values for the change-in-error: 

)()()( ssKsKsK TiTeiTeiTce ""  (5) 

These values correspond to derivative error, needed for 

a PI or PD-like fuzzy controller. 

The three data vectors are organized into pairs: 

)}({~)}();({ sKsKsK iTuiTceiTe , Ii ,0 . (6) 

where ~  means corresponding to. Notice that the 

iteration number is no longer needed: 

}{~};{ iii ucee  (7a) 

The present 1$I  groups are derived from a 

positive step reference, or positive command action. If 

the process’ output is symmetrical around zero when 

command action sign is reversed, expressed as: 

)()()()( ssss iTyiTuiTyiTu "(")(  

(which is most likely to be true), then another I  data 

pairs having the same absolute values but with 

opposite signs will be obtained: 

}{~};{ iii ucee """  (7b) 

The 12 $I  pairs will be rearranged and processed 

according to the values };{ ii cee  in order to obtain J  

groups as follows. 

Let us consider the range of error variable as  

* +maxmax EEe $", ;  }max{max ieGEE - ,  

where GE  is an optional scaling factor, and a set of 

target values conveniently distributed over the range, 

with the step e. , as: 

/ 0maxJmaxJ EeeEe
ee

$  " " ;...;0;...; 0 , (8a) 

with eee JJj ,"  ( 12 $eJ  target values).  

48



The same definitions are made for change-in-error 

variable: 

* +limitlimit CECEce $", ; , }max{max iceGCECE - , 

where GCE  is the optional scaling factor, and  

/ 0
cece JJ cececece ;...;0;...; 0  , " , (8b) 

with ce.  step and cecece JJj ,"  ( 12 $ceJ  target 

values). We consider all possible combinations of 

target values and we get )12)(12( $$ cee JJJ  target 

pairs };{ jj cee .  

For every target pair, we propose that the correct 

assumed control action value should be a medium of 

jN  values for command action }{ iu , as: 

&
 

 
jN

i

iij
j

j uw
N

u

1

1
 (9) 

where 

1
2
3

.4".4"

.%".%"
 

cececeeee

cececeeee
w

jiji

jiji
ij ||or||,0

||and||,1
 (10) 

and jN  being the number of not null ijw  values. The 

weighting factor is reasonable since the pair };{ ii cee  

has a corresponding value iu  relevant to the proposed 

ju  if it is close enough to the target };{ jj cee . More, 

the pairs that are not close to the target are ignored. 

At this point, the J  groups can be described as: 

}{~};{ jujceje , Jj ,1 , (11) 

and expressed as non-fuzzy rules: 

if jee   and jcece   then juu   

if e  is }{ je  and ce  is }{ jce  then u  is }{ ju  

As already proposed in section 2 of this paper, it is 

reasonable to enounce the fuzzy rules: 

if e  is close to }{ je  and ce  is close to }{ jce  then 

u  is close to }{ ju  

The close to term is usually defined by a fuzzy set 

having a triangular membership function around target 

value, which is introduced for je  as: 

51

5
2

3

.6"

.7"
.

"
" 

 .8

eee

eee
e

ee

eeeE

j

j
j

j
E
jj

||,0

||,
||

1

},;{:

 (12a) 

where e.  is the distance between two consecutively 

values in the discrete universe of discourse chosen 

before. It is worth mentioned here that the width of 

these fuzzy sets is e.2 , conveniently chosen to best 

fulfill the completeness requirement for the rule-base.  

The same reasoning is used for the other input 

variable: 

51

5
2

3

.6"

.7"
.

"
" 

 .8

cecece

cecece
ce

cece

cececeCE

j

j
j

j
CE
jj

||,0

||,
||

1

},;{:

 (12b) 

For command action, we can build triangular fuzzy 

set as },;{: ujuuU
jjU .8  for Mamdami fuzzy rules, 

or we can keep the crisp values for Sugeno-Takagi 

fuzzy rules as }{ jujU  . 

The rules obtained would be: 

:jR  if e  is jE  and ce  is jCE  then u  is jU  

 (Mamdami), or 

:jR  if e  is jE  and ce  is jCE  then juu   

 (Sugeno-Takagi). 

Several important aspects must be mentioned here. 

First, a scaling process is theoretically optional but 

might be required by the actual implementation of the 

fuzzy controller. The universe of discourse should best 

use the resources of the numerical device used for 

implementation. Second, the number of fuzzy rules 

depends on the number of target pairs. A large number 

of fuzzy rules imply a more complex and slower 

implementation, which can result in an unstable 

control system. Hence, a larger number of target values 

does not lead to better results, although it appears so. 

Finally, an important observation must be noted. 

The procedure is meant to find the fuzzy rules of the 

controller. Choosing the learning gains, the scaling 

gains, the target values distribution and the reference 

model are still designer’s task and his experience is 

most relevant. 

 

4. Constructing a rule-base by self-learning 

for a DC drive fuzzy control application 
 

The process subjected to the presented self learning 

fuzzy control system in our experiment is a DC drive. 

The main reason is that this application is simple and 

wide spread, and so it is easy to trustfully verify the 

algorithm by comparing the results with some already 

known. The DC drive model is not relevant, as this is 

one of the reasons for self-learning design strategy. 

Hence, the experiment does not include identification 

or parameter estimation stage. 

49



 
Fig. 3. Symbolic representation of the experiment. 

 

The learning scheme (in Figure 2) is implemented 

using a software application (WinFact/BORIS) that 

enables both data acquisition and real-time processing 

(Figure 3). 

The data acquisition is realized with a device 

connected to a computer through the USB port 

(ProfiCASSY). The drive is powered at 24[V] DC 

voltage, and it produces 3000[rpm] for a 10[V] DC 

command voltage applied on power amplifier. The 

speed sensor generates 1[V] signal for 1000[rpm] 

speed. An additional scaling factor of 10/3 is used to 

adjust sensor’s voltage to the [-10; +10][V] reference 

range, so the maximum speed will correspond to the 

maximum command signal.  

The following settings were chosen: 

 reference signal is: )(15)( ttr $- ; 

 reference model is a first order element with no 

time delay )1/()( $ sTKsG refrefref , having 

1 refK  and 1 refT ; 

 learning gain is constant and arbitrarily chosen 

1  gg k  (further investigations about its effect 

on the learning speed and performance are to be 

done; this value was experimentally verified); 

 learning error value to stop iterative learning 

algorithm is 5.0max  #  (which can be replaced 

by a maximum iteration number k  - [3]); 

 scaling factors for the range of each variable, that 

multiplies the maximum recorded values are 

neglected, or 1,,  GUGCEGC , since recorded 

values are already scaled to [-10; +10][V] range; 

 there are 7 target values for error variable and 3 

for change-in-error variable, uniformly chosen 

over the universe of discourse; 

 the sampling time for acquisition ][1.0 sTs  . 

With these settings, a self-learning stage was 

performed. The IAE criterion exponentially tends to 

zero, as expected (see Figure 4). It reaches the stop 

condition (3) at the 10th iteration ( 10 K ): 

483.0)(
10

 #
  Kksk iT . 

 
Fig. 4. The learning error criterion value. 

 

 
Fig. 5. Values for error, change in error and command 

when self-learning stops. 

 

The now available values for error and command 

(Figure 5) are used to extract fuzzy rules, by running a 

custom made Matlab program. Notice in Figure 5 that 

only partial information is available since it is 

impossible to reach all possible combinations of target 

values (8a, 8b). With these data, an incomplete rule-

base would be formed, that is not satisfactory. To 

avoid that, the rule-base construction stage has two 

steps. First it extracts fuzzy rules from available data 

(7a) and from the inverse values of them (7b). Second,  

 

Table 1. The table of extracted fuzzy rules. 
           ce  

e  -10 0 10 

-4.98 -8.1823 -6.9409 -6.5448 

-3.32 -5.4411 * -5.4411 -5.4411 

-1.66 -0.0204 -2.3783 -5.3949 

0 -0.0150 4.7808 0.0150 

1.66 5.3949 5.2157 5.4628 

3.32 5.4411 5.4411 5.4411 * 

4.98 6.5448 6.9409 8.1823 

50



it considers supplementary fuzzy rules so that the rules 

table will be symmetrical around the zero values of 

each input variable (or around the middle cell in the 

table). Rules are presented in Table 1, where the 

marked cells are filled in the second step (notice there 

are only two cells). 

Subsequently, the rule-base was verified by using 

again WinFact/BORIS environment, which provides a 

powerful tool to run real-time tests and analyze fuzzy 

control systems. The results are satisfactory and very 

close to the reference model (see Figure 6): 

 DC drive speed varies around reference (constant 

value corresponding to half the drive’s maximum 

speed), within a reasonable %19  stability range; 

steady-state error is zero; 

 raising time is approximately equal to the value 

for the considered reference model (actually, we 

obtained a slightly lower value); 

 as expected, no overshoot is recorded. 

 

Conclusions
 

A simplified self-learning based methodology for 

building the rule-base of a fuzzy logic controller (FLC) 

was presented and verified, aiming to engage 

intelligent characteristics to a fuzzy logic control 

systems. The process subjected to control is a DC 

drive, a single input single output system that leads to 

the main simplification in the general algorithm. 

System’s desired performance is defined by a reference 

model and rules are extracted from recorded data, after 

the correct control actions are learned. The DC drive is 

used because of the huge number of successful 

applications, which assures a reasonable and trustful 

verification of the presented algorithm. 

A custom Matlab code was used to process 

recorded data and the fuzzy controller was tested in 

real-time by using again the WinFact/BORIS 

environment. The designed system has satisfactory 

behavior, that proves method’s viability. 

An important aspect to mention here is that design 

guidelines were followed and fuzzy control advantages 

were achieved. The control system has satisfactory 

performance and the controller was built without any 

information about the process (model, experience, 

parameters etc.). 

 

 
Fig. 6. The step response of the designed control 

system and the reference model. 

 

References
 

[1] Jantzen, J., Foundations of Fuzzy Control, John Wiley & 

Sons, 2007. 

[2] Jantzen, J., Østergaard, J., Verbruggen, H. “Fuzzy 

Control in the Process Industry: Common Practice and 

Challenging Perspectives”, in Zimmermann, H.J. (ed.), 

Practical Applications of Fuzzy Technologies, Springer, 

1999. 

[3] Nie, J. and D. Linkens, Fuzzy-Neural Control: Principles, 

Algorithms and Applications, Prentice Hall, 1995. 

[4] S. Arimoto; S. Kawamura; F. Miyazaki; S. Tamaki 

Learning control theory for dynamical systems, Proc. 24th 

IEEE Conf. on Decision and Control, 1985, pp 1375-1380. 

[5] Moore, K.L. “Iterative learning control: An expository 

overview” in Datta, B.N. (ed.) Applied and computational 

control, signals, and circuits, Birkhauser, 1999. 

[6] Sala, A., Guerrab, T.M., Babuška, R., Perspectives of 

fuzzy systems and control, IEEE Fuzzy Sets and Systems vol. 

156 (3), 2005, pp. 432-444. 

[7] Nie, J., “A class of new fuzzy control algorithms”, 

Proceedings of IEEE International Conference on Control 

and Applications, Israel, April 3-6, 1999. 

[8] Reznik, L. Fuzzy Controllers, Newnes, 1997. 

[9] Tso, S.K., Fung, Y.H. Methodological development of 

fuzzy-logic controllers from multivariable linear control, 

IEEE Transactions on Systems, Man, and Cybernetics, 

vol.27 (3), 1997, 566–572. 

[10] *** WinFACT 6 Manual, Ingenieurburo Dr. Kahlert. 

51


