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ABSTRACT

The purpose of this paper is to extend the classical gradient method, known for
linear systems of type Cramer, to overdetermined linear systems
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1 Introduction

Let us consider the real matrix A = (aij)i=1,m
j=1,n

, and

the real, transposed arrays x = (x1, x2, . . . , xn)
T ∈

Rn and b = (b1, b2, . . . , bm)T ∈ Rm, respectively.
The linear system A · x = b is called overdeter-
mined linear system, if m > n. Generally, the overde-
termined linear system is incompatible, i.e. doesn’t
exist an array x∗ = (x∗

1, x
∗
2, . . . , x

∗
n)

T ∈ Rn such
that A · x∗ = b. For this reason, instead of the
classical solution x∗, we consider such array x =
(x1, x2, . . . , xn) ∈ Rn for which the function f :
Rn → R, f(x) = ∥A·x−b∥2m takes the minimal value,
where ∥ · ∥m means the Euclidean norm on the space
Rm. The array x ∈ Rn, which minimizes the func-
tion f , it is accepted like the solution of the overdeter-
mined linear system A · x = b in the sense of the least
squares method. We can observe that f(x) ≥ 0 for
all x ∈ Rn and the minimal point x ∈ Rn verifies the
following system with partial derivatives ∂f

∂xk
(x) = 0

for every k = 1, n. We calculate the partial deriva-
tives and doing the corresponding calculus, we ob-
tain that x ∈ Rn is the solution of the linear system
(AT ·A) · x = AT · b, which is a Cramer’s type linear
system with n equations and n unknowns, so x ∈ Rn

will be the classical solution of this Cramer’s linear
system. We also mention the following statement: if
x ∈ Rn is the classical solution of the linear system
(AT ·A) · x = AT · b, i.e. (AT ·A) · x = AT · b, then
f(x) = ∥A · x− b∥2m ≤ ∥A · x− b∥2m = f(x) for all
x ∈ Rn. So x ∈ Rn is the solution of the overdeter-
mined linear system A · x = b in the sense of the least
squares approache, see [1] and [2].

2 Main part

The linear system (AT · A) · x = AT · b can be
solved by Cramer’s rule from theory of determinants
for n ∈ N∗ small natural numbers, but in other cases,
for n ∈ N∗ great natural numbers we can use nu-
merical methods of linear algebra. We mention here,
that one way to solve numerically the linear system
(AT ·A)·x = AT ·b is the gradient method, see [1] and
[2]. The aim of this paper is not to show the gradient
method for the linear system (AT ·A) ·x = AT ·b, and
more generally for a linear system with n equations
and n unknowns, which is well known, but to deduce
the gradient method for the overdetermined linear sys-
tem A · x = b. We take the functions g : Rn → Rm,
g(x) = A · x− b and f : Rn → R,

f(x) = ∥A · x− b∥2m =
m∑
i=1

 n∑
j=1

aijxj − bi

2

,

and we will apply the gradient method for the function
f in order to obtain the minimal point x ∈ Rn. We
have the following calculus of gradient:

gradf(x) =



∂f

∂x1
(x)

∂f

∂x2
(x)

...
∂f

∂xn
(x)


=
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

m∑
i=1

2 ·
 n∑

j=1

aijxj − bi

 · ai1


m∑
i=1

2 ·
 n∑

j=1

aijxj − bi

 · ai2


...

m∑
i=1

2 ·
 n∑

j=1

aijxj − bi

 · ain




=

= 2 ·AT · (A · x− b).

Let us choose x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ Rn the

start point for the gradient method, and we suppose
that we determined the point xk = (xk

1 , x
k
2 , . . . , x

k
n) ∈

Rn and we want to find the next point xk+1 =
(xk+1

1 , xk+1
2 , . . . , xk+1

n ) ∈ Rn. Let Fk : [0,+∞) →
R, Fk(t) = f(xk − t · gradf(xk)) be such function,
for which we calculate the value tk ∈ [0,+∞) in or-
der to obtain the minimal value of the function Fk in
the point tk. We have:

Fk(t) = ∥A · (xk − t · gradf(xk))− b∥2m =

= ∥(A · xk − b)− t ·A · gradf(xk)∥2m =

= ∥g(xk)− t ·A · gradf(xk)∥2m =

=
m∑
i=1

gi(xk)− t ·
n∑

j=1

(
aij ·

∂f

∂xj
(xk)

)2

.

We calculate:

F ′
k(t) =

m∑
i=1

2 ·

gi(xk)− t ·
n∑

j=1

(
aij ·

∂f

∂xj
(xk)

)
·(−1) ·

 n∑
j=1

(
aij ·

∂f

∂xj
(xk)

) .

From the equation F ′
k(tk) = 0 we get:

tk =

∑m
i=1

[
gi(x

k) ·
∑n

j=1

(
aij · ∂f

∂xj
(xk)

)]
∑m

i=1

[∑n
j=1

(
aij · ∂f

∂xj
(xk)

)]2
We denote for every i = 1,m with ai =
(ai1, ai2, . . . , ain) the rows of the matrix A and with
< ·, · >n the Euclidean scalar product on Rn. Then:

tk =

∑m
i=1

[
gi(x

k)· < ai, gradf(xk) >n

]∑m
i=1 [< ai, gradf(xk) >n]

2 =

=
< g(xk), A · gradf(xk) >m

< A · gradf(xk), A · gradf(xk) >m
=

=
< A · xk − b, A · gradf(xk) >m

< A · gradf(xk), A · gradf(xk) >m

We can substitute in this last formula gradf(xk) by
2 ·AT · (A · xk − b), and the scalar 2 we take from the

scalar product. We can observe, that tk ≥ 0, and we
denote:

αk =
< A · xk − b, A ·AT · (A · xk − b) >m

< A ·AT · (A · xk − b), A ·AT · (A · xk − b) >m

Hence the next point with the gradient method we ob-
tain by the formula:

xk+1 = xk − tk · gradf(xk) =

= xk − 1

2
· αk · 2[AT · (A · xk − b)] =

= xk − αk ·AT · (A · xk − b)

Example 1. Let us consider the following overdeter-

mined linear system:


x+ y = 2

x+ 2y = 3

2x+ y = 4

If we solve the linear system

{
x+ y = 2

x+ 2y = 3
then

we receive the solution x = y = 1, which doesn’t
verify the last equation: 2x + y = 3 ̸= 4. We obtain
the same conclusion if we calculate the characteristic

determinant:

∣∣∣∣∣∣
1 1 2
1 2 3
2 1 4

∣∣∣∣∣∣ = 1 ̸= 0. So our overde-

termined linear system is incompatible and does not
have classical solution. Next we calculate the solu-
tion of this system in the sense of the least squares
approach. Let us consider the function f : R2 → R,
f(x, y) = (x+y−2)2+(x+2y−3)2+(2x+y−4)2

and for the linear system

{
∂f
∂x (x, y) = 0
∂f
∂y (x, y) = 0

we obtain:{
6x+ 5y = 13

5x+ 6y = 12.
In another way we get m = 3,

n = 2, A =

1 1
1 2
2 1

 , b =

2
3
4

 , so AT · A =(
6 5
5 6

)
and AT · b =

(
1 3
1 2

)
. Hence our system

AT ·A·x = AT b is the same:
(
6 5
5 6

)
·
(
x
y

)
=

(
13
12

)
,

with classical solution x = 18
11 and y = 7

11 .
So our overdetermined linear system admits the so-

lution x = 18
11 and y = 7

11 in the sense of the least
squares method. Next we apply for this overdeter-
mined linear system A ·x = b the above shoved gradi-

ent method. If x0 =

(
1
0

)
, then A · x0 − b =

−1
−2
−2

 ,

A · AT · (A · x0 − b) =

−14
−21
−21

 , α0 = 1
11 and

x1 = x0−α0 ·AT (A ·x0−b) =

(
18
11
7
11

)
, so we get the

same solution. If x0 =

(
2
1

)
, then A ·x0−b =

1
1
1

 ,
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A · AT · (A · x0 − b) =

 8
12
12

 , α0 = 1
11 and

x1 = x0 − α0 · AT (A · x0 − b) =

(
18
11
7
11

)
, so we

get again the same solution.

3 Conclusions

We saw above that we obtained the same solution
for the previous overdetermined linear system by least
squares approach and with gradient method using only
one step. It is interesting to study, what does happen
for arbitrary overdetermined linear systems?

If we choose the least squares method, then we
must solve numerically a Cramer’s linear system. If
we choose the gradient method we must calculate sim-
ply and very easy some terms of the iterative sequence
(xk)k∈N and this last way is more confortable corre-
sponding to the volum of elementary calculus. It is in-
teresting to study and compare the complexity of these
two methods.
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