

20

VIRTUALIZATION AS THE EVOLUTION OF

OPERATING SYSTEMS

Tudor Zaharia
Vrije Universiteit Amsterdam, The Netherlands

tza200@few.vu.nl

ABSTRACT

Although virtualization has been around for more than 50 years, the subject is hotter

than ever. Initiated to simulate multiple machines using hardware and software

techniques, virtualization today brings server consolidation, security and isolation for

multiple operating systems running on the same hardware. This article’s main objective

is to show that virtual machines are just another step in the evolution of operating

systems. I will argue that in fact a virtual machine monitor is a resource manager just

like an operating system is. Important points like CPU and memory management are

going to be addressed. Although not exhaustive, this paper will discuss the most

important attributes of virtual machine monitors as operating systems and my view on

how the field should evolve in this new light.

Keywords: virtualization, operating systems, VMM, hypervisor

1. Introduction
The "magic" word "virtualization" is on

everybody's lips these days. It seems to provide a

solution to many of the problems that computer

scientist have had. From server consolidation all the

way to running a Real-Time Operating System

together with a General Purpose Operating system on

a single core chip in a mobile phone [6], virtualization

has proven its values time and time again. In High

Performance Computing, virtualization improves

productivity, performance, reliability, availability and

security and decreases software complexity [8]. For

embedded systems virtualization means decreased

prices for manufacturing, since a decrease in bill of

materials is expected [10]. Moreover, live migration

[5], [2] improves reliability by enabling an entire

running operating system to migrate on another

machine with very little downtime.

In datacenters, the Intel 48 core [4] which was

demonstrated last year, could finally find its use

beyond very intensive computational applications.

This is because although novel programming

languages such as SAC [3], Occam [11] and others,

for one reason or another, did not became

mainstream. This means that programmers still use

traditional imperative languages extended with

Pthreads [9] and MPI [12] which makes parallel

programming very difficult and does not take full

advantage of the multicore processing power of recent

processors. Instead, this power could be leveraged by

the virtualization engines.

But virtualization provides a lot of features that

operating systems also provide. Above all, a virtual

machine monitor (VMM) is a resource manager. It

allows multiple operating systems to share the same

hardware and this looks very similar to the multi-user,

multi-program support offered by operating systems. I

will argue that virtualization is an evolution of

operating systems and it should be treated like that.

This means that some of the functionalities provided

by the operating systems should be moved in the

VMM and inherently the OSes should be moved

higher on the stack (a thing that actually happened

already).

Following is an outline of the different types of

virtualization. Short details are given about each one.

Virtualization can be achieved in several ways:

1. Emulation/simulation. A software emulator

allows computer programs to run on a

platform (computer architecture and/or

operating system) other than the one for

which they were originally written. Multiple

such emulators were released under public

licenses [16]. The terms emulator and

simulator are very close in meaning, and it's

beyond this paper's scope to argue about

which one is the most appropriate.

2. Partial virtualization simulates multiple

instances of much (but not all) of an

underlying hardware environment.

3. OS-level virtualization enables multiple

isolated and secure virtualized servers to run

on a single physical server.

4. Paravirtualization presents a software

interface to virtual machines that is similar

but not identical to that of the underlying

21

hardware. This means that the "guest"

operating system needs to be modified in

order to run in the paravirtualized hardware

(to support the para-API). The term

"paravirtualization" was first used in

association with the Denali virtual machine

[19].

5. Full virtualization provides a complete

simulation of the underlying hardware. The

result is a system in which all software

capable of execution on the raw hardware

can be run in the virtual machine.

Increased productivity, performance, reliability

and all of the words are used alongside virtualization.

But they used to be the qualities of operating systems

as well. So what did exactly change why is a VMM

different from an Operating System?

In this paper I will argue that virtual machines

are just the evolution of the operating systems. For

this I will start by looking at the definition of an

operating system. [15] defines the operating systems

regarding two individual aspects:

 an extension of a machine's functionality

 a resource administrator

These are also the main characteristics of a

virtual machine. In fact, virtualization is just the latest

development in the operating system's continuous

adaptation to different forms of multitenancy. This

started as the need to provide multiuser support and

protected memory. I will argue that, against all recent

trends which favor full virtualization, a new paradigm

in operating systems is needed that will change the

face of the operating systems. This is because

virtualization should take over some functionality

provided by the operating systems since it is already

providing them.

This evolution does not exclude the recent

advances in virtualization support provided by the

CPUs, but the evolution should be made by rethinking

each component's functionalities and together provide

improved performance.

2. The virtual machine monitor is a

resource manager
The extension of a machine's functionalities is

made by the operating system through its process,

memory and I/O management. A virtual machine

manager does the same things, but instead of process

management, it is doing operating system

management. A virtual machine manager multiplexes

resources in two modes: in time and in space, exactly

as an operating system does [15].

This section will describe in detail each one and

how some of the functionality actually moved from

the operating system side to the virtual machine

monitor. I will argue that the implementation of these

functionalities should be rethought in order to provide

better usage of resources. I will also try to give some

answers on why these changes were not made yet

(and might as well never be done).

2.1 Operating systems management
A virtual machine manager deals with multiple

operating system instances, which can vary a lot with

regards to the functionalities that they provide and/or

the way they are implemented. But so do processes

that run inside an operating system. To run in an

operating system, processes make system calls which

form the API of an operating system. To run in a

(virtual) machine, operating systems make calls that

form the API of that (virtual) machine. The VMM has

just implemented another level of abstraction that

allows multiple operating systems to share the same

resources (i.e. to run at the same time on the same

machine).

Considering this, operating systems lost the

access to the privileged instruction in favor of the

VMM that now runs in ring0 as it is called by

VMware or dom0 in XEN.

If virtual machines calls could someday be

standardized, every operating system developer could

provide its version for that "architecture". One could

argue that this calls are already standardized in a way

(by the x86 architecture), and operating systems

should use that. But this comes against the trend that

has moved the operating system higher on the stack

and its place was taken by the virtual machine

manager.

In fact, even without the standardized interface,

developers should port their operating systems to

these diverse virtual machines architectures (just as

they did by porting them to various CPU

architectures). It would just seem fair since the

application developers were constrained to port their

application to particular operating systems (as POSIX

standard was not adopted by all the operating system

developers and therefore application developers had

to port their code to each OS).

Of course, since the world of computer science

depends on the business models as well, it is very

improbable that we will see redesigned OSes so that

they give up functionality in favor of VMMs.

I believe this happens because the major players

in operating systems do not want a standardized API

for virtualization nor they want to provide less

functionality. Microsoft still has a very big share of

the market [7] and it also entered the virtualization

field. It is expected that most of their operating

systems users would prefer to acquire their

virtualization products.

On the other hand, VMware, the biggest

virtualization company wants to impose its own API.

I believe these are the main reasons that hold

back the rethinking the operating systems in general.

Naturally, another reason is backward compatibility,

for which full virtualization is the preferred choice.

22

2.2 CPU access management
Operating systems have a scheduling algorithm

that decides which process/thread runs next.

Similarly, a VMM should decide which operating

system runs next.

Nowadays the most common thing to have is a

hybrid, where a host operating system runs a type 2

(hosted) hypervisor and the guest operating systems

are installed on top of this hypervisor. New solutions

that make a VMM behave more like an OS are

already available. WMware's variant is called ESX

server. These solutions provide significantly higher

performance [17].

An important penalty hit in virtualization comes

from multiple switches between the virtual machine

monitor and operating system. This is because some

calls are only allowed in ring 0, the most privileged of

all. This is similar to operating systems, where some

instructions are only allowed to be made from a

certain context. If the operating systems would be

built keeping in mind that they are running over

virtualized hardware, a lot of calls that trap to the

VMM could be avoided.

2.3 Memory management
Virtual memory was introduced as an automatic

alternative to the overlays used by a programmer to

run software that would not fit in the machine's main

memory [14]. A Memory Management Unit translates

physical addresses into machine addresses. In a

virtualized system, memory is virtualized by the

hypervisor, which is another level introduced. It is

called Shadow Page Tables (SPTs). These pages

provide a level of indirection between virtual and

machine addresses.

Intel and AMD both developed hardware

support for these SPTs. Intel has called it's system

"Extended page tables" and AMD uses the name

"Rapid Virtualization Indexing". Another level of

indirection only increases overhead, especially since

this level could be entirely moved from the operating

system to the VMM. Since the hypervisor is the one

that runs in privileged mode, it should be the one that

deals completely with the hardware resources. This

means that operating systems should be, again,

designed with this in mind. As it is right now, hacks

like "ballooning" [17] are used by the VMM in order

to reclaim memory. These again, introduce more

overheard.

In my opinion SPTs are (another) step made in

the wrong direction. The reasons are again business

based. The OS developers do not want to modify their

products while CPU manufacturers are always eager

to support new features requested by the software.

2.4 I/O management
It is somewhat ironic that device drivers live on

the application facing side (in the guest OS) which

makes the hypervisor look like a microkernel. This if

we would not consider that it runs its own drivers.

Currently there are three techniques used for I/O

management, although only the first two are

equivalent:

 User space device emulation.

 Hypervisor-based device emulation.

 Device passthrough.

In the first case, the device emulation is

implemented in user space. QEMU [1] provides

device emulation and it is used by a large number of

independent hypervisors like KVM [13] and

VirtualBox [18]. Device emulation is totally

independent from the hypervisor, which makes this

solution more secure than hypervisor-based device

emulation.

The second solution, although faster, it burdens

the hypervisor with this functionality.

Device passthrough can be used when only one

virtual machine needs access to a particular device. In

this case sharing becomes more efficient, as the

virtualization engine provides isolation of devices to a

given guest operating system so that the device can be

used only by the designated guest. Improved

performance and isolation of devices that cannot be

shared are the main benefits of this approach.

Intel and AMD both provide support for device

passthrough in their recent CPU architecture

developments. "Virtualization Technology for

Directed I/O" (VT-d) from Intel and "I/O Memory

Management Unit" (IOMMU) from AMD provide the

means to map PCI physical addresses to guest virtual

machines addresses. This mapping ensures that the

access is exclusively granted to that particular virtual

machine which can use it as if it was a non-virtualized

system.

I think this solution could be adapted so that it is

used by the memory manager of a hypervisor. I can

imagine a system with multiple hosts where each

operating system has "passthrough" access to a part of

the memory. In this case paging should (and probably

will) be kept also on the OS level. An analogous

example is a system with multiple (physical) USB

ports.

These are individually isolated to given domains,

so each virtual machine has exclusive access to

certain ports.

Further evolution of the virtualization could

bring virtualization-aware devices that would

eliminate I/O virtualization overhead by employing

the adequate hardware support. The devices should

export multiple interfaces that can be mapped to

virtual interfaces inside the virtual machines.

Communication between the operating system and the

device would be made directly, without trapping into

the VMM. This is like DMA in a way, but not from

the device to the memory, but from the operating

system to the device.

23

3. Conclusions
Virtualization provides a lot of benefits to its

user. Most significant, it brings server consolidation.

Since the development of live VM migration,

automatic load balancing is trivial and a robust model

for dealing with hardware failures is real.

The benefits are visible also in mobile phones,

where virtualization can decrease the costs of devices.

Virtualization is a solution to provide true isolation

among operating systems.

But there's more to virtualization. In this paper I

have shown how virtualization is in fact a step in the

operating systems' evolution. The main argument was

that a virtual machine monitor is first of all a resource

manager that multiplexes access to resources to

multiple operating systems. I have argued that since

the operating systems have moved higher on the

stack, they should be designed accordingly. The main

points that I discussed covered operating system,

CPU, memory and I/O management made by the

VMM.

But the trend is actually the opposite. The same

functionality continues to be provided at the operating

system's level and at the virtual machine monitor's

one. Advances in CPU designs are made to move

some of the burden into the hardware instead of

rethinking the whole hardware and software stack.

This might be because Operating Systems failed to

provide the real process isolation, and the problem

was solved through virtualization. Moving

functionalities from the operating system to the VMM

could open up old wounds and, moreover, turn

operating systems into "bags of drivers" as Marc

Anddressen once said.

References:
[1] Fabrice Bellard. Qemu, a fast and portable dynamic translator.

In ATEC ’05: Proceedings of the annual conference on USENIX
Annual Technical Conference, pages 41–41, Berkeley, CA, USA,

2005. USENIX Association.

[2] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley,
Norm Hutchinson, and Andrew Warfield. Remus: high availability

via asynchronous virtual machine replication. In NSDI’08:

Proceedings of the 5th USENIX Symposium on Networked
Systems Design and Implementation, pages 161–174, Berkeley,

CA, USA, 2008. USENIX Association.

[3] Clemens Grelck and Sven-Bodo Scholz. Sac: a functional array
language for efficient multi-threaded execution. Int. J. Parallel

Program, 34(4):383–427, 2006.

[4] intel.com. Futuristic intel chip could reshape how computers
are built, consumers interact with their pcs and personal devices:

http://www.intel.com/pressroom/archive/releases/20091202comp

sm.htm.
 [5] Christopher Clark Keir, Christopher Clark, Keir Fraser, Steven

H, Jacob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt, and

Andrew Warfield. Live migration of virtual machines. In In
Proceedings of the 2nd ACM/USENIX Symposium on Networked

Systems Design and Implementation (NSDI, pages 273–286, 2005.

[6] linuxfordevices.com. Singlecore linux phone hits the market.
http://www.linuxfordevices.com/c/a/News/SinglecoreLinuxphonehi

tsthemarket/.

[7] marketshare.hitslink.com. Os market share.
http://marketshare.hitslink.com/os-market-share.aspx?qprid=9.

[8] Mark F. Mergen, Volkmar Uhlig, Orran Krieger, and Jimi

Xenidis. Virtualization for high-performance computing. SIGOPS
Oper. Syst. Rev., 40(2):8–11, 2006.

[9] Institute of Electrical and Inc. Information Technology

Electronic Engineers. Portable Operating Systems Interface
(POSIX) Part: System Application Program Interface (API)

Amendment 2: Threads Extension [C Language]. IEEE, IEEE,

1995.
[10] ok labs.com. Ok labs enables world’s first virtualized

smartphone, with mobile virtualization solution : Open kernel labs.

http://www.ok-labs.com/releases/release/
ok-labs-enables-worlds-first-virtualized-smartphone-with-mobile-

virtualizat.

[11] A. W. Roscoe and C. A. R. Hoare. The laws of occam
programming. Theor. Comput. Sci., 60(2):177–229, 1988.

[12] Marc Snir and Steve Otto. MPI-The Complete Reference: The

MPI Core.
MIT Press, Cambridge, MA, USA, 1998.

[13] Sun Microsystems Inc. The k virtual machine (kvm). White

paper, 1999.
[14] Andrew S. Tanenbaum. Structured Computer Organization

(5th Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

2005.
[15] Andrew S. Tanenbaum. Modern Operating Systems. Prentice

Hall Press, Upper Saddle River, NJ, USA, 2007.

[16] Jeffrey van der Hoeven, Bram Lohman, and Remco Verdegem.
Emulation for digital preservation in practice: The results.

International Journal of Digital Curation, 2(2), 2007.

[17] Carl A. Waldspurger. Memory resource management in
vmware esx server.

[18] Jon Watson. Virtualbox: bits and bytes masquerading as

machines. Linux J., 2008(166):1, 2008.
[19] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble.

Denali: Lightweight virtual machines for distributed and networked

applications. In Proceedings of the USENIX Annual Technical
Conference, 2002.

http://marketshare.hitslink/

