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ABSTRACT

The purpose of this paper is to determine the arithmetic operations count for the least squares method
and for the gradient method in the case of overdetermined linear systems. If the overdetermined linear

system has great dimensions, then the arithmetic operations count with gradient method is less then with
the least squares method.
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1 Introduction

Let us consider the real matrix A = (aij)i=1,m
j=1,n

, and

the real, transposed arrays x = (x1, x2, . . . , xn)
T ∈

Rn and b = (b1, b2, . . . , bm)T ∈ Rm, respectively.
The linear system A · x = b is called overdeter-
mined linear system, if m > n. Generally, the overde-
termined linear system is incompatible, i.e. doesn’t
exist an array x∗ = (x∗

1, x
∗
2, . . . , x

∗
n)

T ∈ Rn such
that A · x∗ = b. For this reason, instead of the
classical solution x∗, we consider such array x =
(x1, x2, . . . , xn) ∈ Rn for which the function f :
Rn → R, f(x) = ∥A·x−b∥2m takes the minimal value,
where ∥ · ∥m means the Euclidean norm on the space
Rm. The array x ∈ Rn, which minimizes the func-
tion f , it is accepted like the solution of the overdeter-
mined linear system A · x = b in the sense of the least
squares method. We can observe that f(x) ≥ 0 for
all x ∈ Rn and the minimal point x ∈ Rn verifies the
following system with partial derivatives ∂f

∂xk
(x) = 0

for every k = 1, n. We calculate the partial deriva-
tives and doing the corresponding calculus, we ob-
tain that x ∈ Rn is the solution of the linear system
(AT ·A) · x = AT · b, which is a Cramer’s type linear
system with n equations and n unknowns, so x ∈ Rn

will be the classical solution of this Cramer’s linear
system. We also mention the following statement: if
x ∈ Rn is the classical solution of the linear system
(AT ·A) · x = AT · b, i.e. (AT ·A) · x = AT · b, then

f(x) = ∥A · x− b∥2m ≤ ∥A · x− b∥2m = f(x) for all
x ∈ Rn. So x ∈ Rn is the solution of the overdeter-
mined linear system A · x = b in the sense of the least
squares approache, see [1] and [3].

The linear system (AT · A) · x = AT · b can be
solved by Cramer’s rule from theory of determinants
for n ∈ N∗ small natural numbers, but in other cases,
for n ∈ N∗ great natural numbers we can use nu-
merical methods of linear algebra. We mention here
the Gauss elimination method, when the Cramer type
linear system is reduced to an upper triangular linear
system, [1] or [3]. Analogously, we can reduce the
Cramer type linear system to a lower triangular linear
system, too. When we reduce the Cramer type lin-
ear system to a diagonal linear system then we use
the Gauss-Jordan elimination procedure, [3]. In [2]
we presented the gradient method for overdetermined
linear systems A · x = b.

Let us choose x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ Rn the

start point for the gradient method, and we suppose
that we determined the point xk = (xk

1 , x
k
2 , . . . , x

k
n) ∈

Rn and we want to find the next point xk+1 =
(xk+1

1 , xk+1
2 , . . . , xk+1

n ) ∈ Rn with the gradient
method. In [2] we obtained the formula: xk+1 =
xk − αk ·AT · (A · xk − b) with

αk =
< A · xk − b, A ·AT · (A · xk − b) >m

< A ·AT · (A · xk − b), A ·AT · (A · xk − b) >m
,

where < ·, · >m is the Euclidean scalar product on
Rm.
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2 Main part

The purpose of this paper is to compare the arith-
metic operations count for the least squares method
and for the gradient method in the case of overdeter-
mined linear systems. In order to obtain AT · A we
must multiply any row of AT with any column of A,
so we need m multiplication and m − 1 addition and
this is repeted n2 times, which means n2 ·m multipli-
cation and n2 · (m − 1) = n2 · m − n2 addition. In
order to obtain AT · b we must multiply a row of AT

with the column matrix b, so we need m multiplica-
tion and m − 1 addition and for any row of AT it is
repeted n times, which means n ·m multiplication and
n·(m−1) = n·m−n addition. Hence we can form the
linear system (AT ·A) ·x = AT · b with n2 ·m+n ·m
multiplication and n2 ·m− n2 + n ·m− n addition.
According to [3], if we solve the Cramer type linear
system (AT · A) · x = AT · b with Gauss elimination
method we use 4

3 · n
3 − 1

3 · n multiplications and divi-
sions and 4

3 ·n
3 − 3

2 ·n
2 + 1

6 ·n additions and subtrac-
tions, and if we solve it with Gauss-Jordan elimination
method, then we use 3

2 ·n
3 − 1

2 ·n multiplications and
divisions and 3

2 · n3 − 2 · n2 + 1
2 · n additions and

subtractions, respectively. Hence to solve the overde-
termined linear system by the least squares method
involving the Gauss elimination method we execute
n2 ·m+n ·m+ 4

3 ·n
3− 1

3 ·n multiplications and divi-
sions and n2 ·m−n2+n·m−n+ 4

3 ·n
3− 3

2 ·n
2+ 1

6 ·n =
n2 ·m+n ·m+ 4

3 ·n
3− 5

2 ·n
2− 5

6 ·n additions and sub-
tractions, and involving the Gauss-Jordan elimination
method we make n2 ·m+n ·m+ 3

2 ·n
3− 1

2 ·n multipli-
cations and divisions and n2 ·m−n2+n ·m−n+ 3

2 ·
n3−2·n2+ 1

2 ·n = n2 ·m+n·m+ 3
2 ·n

3−3·n2− 1
2 ·n

additions and subtractions, respectively.
Next we calculate the number of arithmetical opera-

tions necessary in the case of gradient method in order
to solve the overdetermined linear system A · x = b.
We remember the formulas at the step k + 1 : xk+1 =
xk − αk ·AT · (A · xk − b), where

αk =
< A · xk − b, A ·AT · (A · xk − b) >m

< A ·AT · (A · xk − b), A ·AT · (A · xk − b) >m
.

If a row of the matrix A we multiply with the column
array xk ∈ Rn we execute n multiplications and n− 1
additions. If we consider all the m rows of A then for
A · xk we make m · n multiplications and m · (n− 1)
additions. To realize A · xk − b we do m subtractions.
If a row of the matrix AT we multiply with the column
vector A ·xk− b we have m multiplications and m−1
additions. If we take all the n rows of AT then for
AT · (A ·xk − b) we execute n ·m multiplications and
n · (m − 1) additions. If a row of the matrix A we
multiply with the column vector AT · (A · xk − b) we
do n multiplications and n − 1 additions. If we take
all the m rows of A then for A · AT · (A · xk − b) we
do m · n multiplications and m · (n− 1) additions. In
order to obtain the scalar products < A · xk − b, A ·

AT · (A · xk − b) >m and < A · AT · (A · xk − b),
A ·AT · (A ·xk− b) >m we execute m multiplications
and m − 1 additions, respectively. In order to obtain
the value αk, we make one division, and to get αk ·AT ·
(A ·xk − b) we do n multiplication, because the scalar
αk multiply the column vector AT · (A · xk − b) and
after we calculate xk+1, using the vector subtraction
xk−αk ·AT ·(A ·xk−b), which means n subtractions.
Totally we have m·n+n·m+m·n+m+m+1+n =
3 ·m · n+2 ·m+ n+1 multiplications and divisions
and m · (n − 1) +m + n · (m − 1) +m · (n − 1) +
(m− 1)+ (m− 1)+ n = 3 ·m · n+m− 2 additions
and subtractions.

Now, if with the gradient method we make k steps,
then we do totally k · [3 · m · n + 2 · m + n + 1]
multiplications and divisions and k · [3 ·m ·n+m−2]
additions and subtractions.

3 Conclusions

Let m,n ∈ N∗ be great natural numbers with
m > n, so we suppose that the overdetermined linear
system has great dimensions. If k ∈ N∗, the number
of iteration steps verifies k < n

3 , then k · [3 ·m ·n+2 ·
m+n+1] < n2 ·m+n ·m+ 4

3 ·n
3− 1

3 ·n, k · [3 ·m ·
n+2 ·m+n+1] < n2 ·m+n ·m+ 3

2 ·n
3− 1

2 ·n, and
k·[3·m·n+m−2] < n2·m+n·m+ 4

3 ·n
3− 5

2 ·n
2− 5

6 ·n,
k·[3·m·n+m−2] < n2·m+n·m+ 3

2 ·n
3−3·n2− 1

2 ·n.
So we can conclude, that for great overdetermined lin-
ear systems is better to use the gradient method instead
of the least squares method, because we can reduce the
arithmetic operations count.
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,,Petru Maior”, Tg. Mureş, 2004.
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(XXIV), no. 1, 2010, ISSN 1841-9267.

[3] S. S. Rao, Applied Numerical Methods for Engi-
neers and Scientists, Prentice Hall, Upper Saddle
River, New Jersey, 2002.

36




