SOME CONSIDERATIONS ON PARAMETRIC MINIMUM PROBLEMS

Marcel Bogdan

"Petru Maior" University of Tg. Mureş, Romania e-mail: marcel.bogdan@science.upm.ro

ABSTRACT

A sequence of parametric minimum problems related to a "limit" minimum problem is considered.

A comparison on sufficient conditions given in [1] and [3] is studied.

Keywords: minimum problems, Γ -convergence

1 Introduction

Let X be a Hausdorff topological space and let us consider, for any $n \in \mathbb{N}$, the following minimum problems:

 $(M)_n$ Find an element $a_n \in X$ such that

$$f_n(a_n) \le f_n(b), \ \forall b \in X,$$

(M) Find an element $a \in X$ such that

$$f(a) \le f(b), \ \forall b \in X,$$

where $f_n: X \to \mathbb{R}, f: X \to \mathbb{R}$.

The aim is to compare conditions on the "convergence" of $(f_n)_n$ to f in order to obtain a convergence result for the solutions of $(M)_n$ to solutions of (M).

We shall translate conditions given in [1] and [3] to our specific problems. Generally, equilibrium problems deal with bifunctions $g: X \times X \to \mathbb{R}$, therefore we consider in particular g(a,b) = f(b) - f(a).

2 Main part

Proposition 1. Let $(a_n)_n$ be a sequence of solutions of $(M)_n$ and let $a_n \to a$. Suppose that f is lower semicontinuous at a and f_n , f verify condition $(\mathbf{C})_{inf}$

$$\liminf_{n} [f_n(b) - f(b) - f_n(a_n) + f(a_n)] \le 0, \forall b \in X.$$

Then, limit a is a solution of (M).

Proof. Let $b \in X$ be arbitrary. We have

$$0 \le \liminf_{n} [f_n(b) - f_n(a_n)]$$

$$\le \limsup_{n} [f(b) - f(a_n)]$$

$$+ \liminf_{n} (f_n(b) - f_n(a_n) - f(b) + f(a_n))$$

$$\le \limsup_{n} [f(b) - f(a_n)]$$

$$= f(b) - \liminf_{n} f(a_n) \le f(b) - f(a).$$

Proposition 2. Let $(a_n)_n$ be a sequence of solutions of $(M)_n$ and let $a_n \to a$. Suppose that f_n, f verify condition $(\mathbf{C})_{\text{sup}}$

$$\lim_{n} \sup_{a} [f_n(b) - f(b) - f_n(a_n) + f(a)] \le 0, \forall b \in X.$$

Then, limit a is a solution of (M).

Proof. See [3] for the general case.

$$0 \le \limsup_{n} [f_n(b) - f_n(a_n)]$$

$$= f(b) - f(a)$$

$$+ \limsup_{n} (f_n(b) - f_n(a_n) - f(b) + f(a))$$

$$\le f(b) - f(a), \forall b \in X.$$

It is evident that one can replace \limsup_n with \liminf_n in $(\mathbf{C})_{\sup}$ and the proof does not change. Starting from the trivial situation when f=0, one can remark that $(\mathbf{C})_{\inf}$ is less restrictive than

 $(\mathbf{C})_{\mathbf{sup}}$ so Proposition 1 can be applied although $\limsup_n [f_n(b) - f_n(a_n)] > 0$, for some $b \in X$.

Condition (C)_{sup} implies (C)_{inf} and lower semicontinuity of f at a, when $(a_n)_n$ are solutions of $(M)_n$ and $a_n \to a$. Chose $b := a_n$ in (C)_{sup}, hence $\limsup_n [-f(a_n) + f(a)] \le 0$, i.e. f is lower semicontinuous at a.

Let us remind the definition of Γ —convergence (see [2]).

Definition 1. A sequence $(f_n)_n$, $f_n: X \to \overline{\mathbb{R}}$ is said to Γ -converges in X to $f: X \to \overline{\mathbb{R}}$ if, for all $x \in X$ one has

1. for each $(x_n)_n$ convergent to x it results in

$$f(x) \le \liminf_n f_n(x_n);$$

2. there exists a sequence $(x_n)_{n\in\mathbb{N}}$ convergent to x such that

$$f(x) \ge \limsup_{n} f_n(x_n).$$

Suppose that $(f_n)_{n\in\mathbb{N}}$ Γ —converges to f. Is condition $(\mathbf{C})_{\inf}$ verified? Let us try with the following increases:

$$\liminf_{n} [f_n(b_n) - f(b) - f_n(a_n) + f(a_n)]$$

$$\leq \limsup_{n} [f_n(b_n) - f(b)]$$

$$+ \liminf_{n} [-f_n(a_n) + f(a_n)]$$

$$\leq - \liminf_{n} f_n(a_n) + \liminf_{n} f(a_n)$$

$$\leq -f(a) + \liminf_{n} f(a_n).$$

The answer is yes if

$$\liminf_{n} f(a_n) \le f(a).$$
(1)

Take, for example, $f_n(x) = -\cos(2\pi nx)$, $x \in [0,1] = X$. In this case $(f_n)_n \Gamma$ —converges to the constant function f=-1 so (1) applies trivially.

Take
$$f_n(x)=f_1(nx), x\in\mathbb{R}=X,$$
 where $f_1(x)=\begin{cases} 1, x=1\\ -1, x=-1 \end{cases}$ Then, (f_n) Γ -converges to f , 0 , otherwise .

where $f(x) = \begin{cases} 0, & x \neq 0 \\ -1, & x = 0. \end{cases}$ Remark that (1) does not apply since

$$\liminf_{n} f(a_n) = 0 > -1 = f(0).$$

Condition (C)_{inf} is not verified. Indeed, $a_n = -1/n$ are solutions for $(M)_n$, a = 0 is the solution for (M) while, for b = -1 we have

$$\liminf_{n} \left[f_n(-1) - f(-1) - f_n(-1/n) + f(-1/n) \right] \\
= 0 - 0 - (-1) + 0 > 0.$$

In this case, the conclusion in Proposition 1 is obtained by Theorem 1.21 in [2]. It is worth nothing that in Proposition 1 there are no compactness assumptions.

3 Conclusions

The notion of Γ -convergence is a powerful tool in the study of variational problems. It involves the study of parametric minimum problems. We tried to take a closer look to this type of convergence, known also as epi-convergence, when we particularized the parametric equilibrium problems in [1] and the parametric quasivariational inequalities in [3].

References

- [1] Bogdan, M., Kolumbán, J., Some regularities for parametric equilibrium problems, J. of Glob. Optim. **44**, 481-492 (2009).
- [2] Braides, A., Γ -convergence for beginners, Oxford University Press 2002.
- [3] Lignola, M.B., Morgan, J., Convergence of solutions of quasivariational inequalities and applications, Topological Methods in Nonlinear Analysis **10**, 375-385 (1997).