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ABSTRACT

The purpose of this paper is to extend the classical gradient method, known for nonlinear

systems with n equations and n unknowns, to overdetermined nonlinear systems.
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1 Introduction

It is well known the gradient method for nonlinear
systems with n equations and n unknowns, see for ex-
ample [1] and [2]. The notion of overdetermined non-
linear system and its solution as the best least squares
approximate is introduced for example in [3], or more
recently for example in [4]. The purpose of this paper
is to extend the gradient method for overdetermined
nonlinear systems. We mention that in [5] we extended
the gradient method, known for linear systems of type
Cramer, to overdetermined linear systems. In [6] we
do the comparative efficiencies of the least squares
method and the gradient method for overdetermined
linear systems.

2 Main part

LetGl,Gg,...,Gm :DCR*"—=R, D 75 0 be
given functions and G = (G1,Ga,...,Gp,) : D C
R™ — R™. We can attache to this function G the fol-
lowing nonlinear system:

G(x) =90, ey

where x = (21,22,...,2,) € D and § € R™ is the
null element. If m > n then we say that the nonlinear
system (1) is overdetermined. Generally the overde-
termined nonlinear system does not have solution, i.e.
doesn’t exist z* = (zf,25,...,25) € D such that

n

G(z*) = 6. We build the function f : D C R" — R

given by the formula f(x) = > (G;(x))?. It is obvi-
=1
ous that f(x) > 0 forall z € D. We want to determine
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T = (T1,T2,...,%n) € D such that f(T) be a local
minimal, i.e. f(Z) < f(z),forallz € V C D, where
V' is an appropiate neighborhood of Z. This point T we
accept like a solution of the overdetermined nonlin-
ear equation (1) in the same sense of the least squares.
Next we present the gradient method for the function
finorder to obtain T € D.

Let us choose the initial point 2° =
(29,23,...,2%) € V C D. We suppose
that we already realized to obtain the point
o = (aF, 25, . 2F) € V and we want to get
the next point zFt1 = (g1 ghtl  gk+1l) ¢ ¢

by the gradient method. We consider the function
Fy : [0, M}) — R given by the formula:

F.(t)=f k=t gradf(:vk)) =

m

[Gy(a* —t - grad f (")),
1

7

where

of
8(E1

of

erad £(0) = (@), @) o)

is the gradient of the function f in point z. Here we
fixed the value M}, € [0,400) U {400} such that
the functions G; and f are well defined, i.e. ¥ —
t - gradf(z¥) € V forall t € [0, M}). We suppose
that all functions G; : D C R™ — R, i = 1, m are
differentiable on the open subset D C R™. So we can
consider the Taylor’s expansions of the functions G;,

i = 1,m in the point ¥ and we take only the linear




term:

Gi(z"* —t - grad f(z")) =

= Gi(2") + DGi(2")(~t - grad f (")),
where DG (z%) is the differential of the function
G; at point 2* and DG, (2*)(—t - grad f(z¥)) is the
above described differential function in the value —¢ -

grad f(z*). Now we use the representation of the dif-
ferential by partial derivatives:

G'(ask —t~gradf( k)) =

Z

(o) -
) grad f(a*) >

where < -,- >,: R" x R® — R is the standard
scalar product on the space R™, given by the formula:

€ R™ and

(%cj

= Gy(2*) — t- < grad G;(2*

n
<@y >n= ) wy, withz = (25),_15
i=1 m .
2 [Gi(a) -

Y = (¥i);=1» € R". Sowe get Fy,(t) =
i=1

t- < grad G;(z%), grad f(z*) >,]2. Now we want to
determine such positive value ¢ > 0 for which Fj, takes
the minimal value. We calculate:

dFk

Z 2.
—t- < grad Gy (="
- [— < grad G, (z

), grad f(z*) >p]
"), grad f(a*) >].

The minimal value for ¢ > 0 we obtain from the
equation dF"(t) = 0. So:

Z Gi(z%) < grad G;(2), grad f(2*) >,
i=1
—t- Z [< grad G;(z*), grad f(z*)

=1

>,]2=0.

At the end we get the solution for t = ¢y, :

f}l Gi(a*): < grad Gy(a*), grad f(z*) >
T 3 [< erad Gy(a¥). grad £ (24) >
From the equality f(z) = é (Gi(z))? results:
$2-Gia)- 32 @)
o) — $2-Gila) G |
$2-Gila) JE @)
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e B e
_s. a_n,;,: () aTj(x) (%;n(
S (2) 952 () G (@)
G1(z)
Go(x) |
G (@)
9Gy (e 9Gy (1 9G (0 T
—9. 89:1- Oxo oz,
% (¢) LG (r) B (@)
Gl(x)
GQ(J?) _
Gon(2)
=2-(G'(2))" - G(),

where G'(z) is the Jacobi matrix of the function G in
the point x. Consequently:

grad G (z)
grad Go(x)
G'(z) = :
grad G, ()
Therefore, if we take the matrix multiplication:
G' (%) - grad f(zF) =
< grad G4 (2%), grad f(z%) >
< grad Go(2%), grad f(aF) >

< grad Gm(zk); grad f(z%) >,
then
< G(2%), G’ (2%) - grad f(2F) >,
< G'(x*) - grad f(z*), G'(z*) - grad f(zF) >
But grad f(z%) = 2 (G'(z*))T - G(2%), so
ty =< G(z%),2- G'(z") - (G'(«")T - G(z
[ <G'(@*)-2- (G ()T - Gh),
G'(z%) -2 (G'(2")T - G(a®) =
= < GEH.G N (@) Gt
[ < G'(a*) - (G'(")T - Ga"),
G (") - (G (@) - Ga*) > -
From this formula we can see immediately that ¢;, > 0,

being the quotient of two positive numbers. We sup-
pose in plus that ¢, € [0, M}), too. This means that:

t, =

") >m /

) >m /

oF Tt =gk — ¢ - grad f(2F) =

=azF 1,2 (G'(2")T - G(2").



Let us denote by

ap =< G(z"),G'(z") - (G' (&™) - G(a*) > /
[ <G (@*) - (G' (@) - Gah),
G'(@") - (G'(«")" - G(a") >
and at the end we obtain the iteration

k1 _ ok

5 a2 (@) -Gt =

=2F —ap - (G' ()T - G(=P).

xT

3 Conclusion

We can observe that the gradient method presented
above for overdetermined nonlinear systems (m >
n) is valid for the welldetermined nonlinear systems
(m = n) and for the underdetermined nonlinear sys-
tems (m < n), too.

Next we consider G : R” — R™, G(x) = A-z—b,
where A is a matrix with m rows and n columns, = and
b are column matrices with n and m rows, respectively.
Then G'(z) = A and G(z) = 6 means A -z = b.
Hence we obtain for the overdetermined linear system
A -z = b, (m > n) the solution using the gradient
method by the iteration:

gt =gk — oy AT (A 2P —b),

where

<A-zk—b A AT . (A-2F —b) >,

Ak

see [5].

Concerning the order of convergence of the gradi-
ent method for overdetermined nonlinear systems we
will deduce in the next paper.
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