THE GRADIENT METHOD FOR OVERDETERMINED NONLINEAR SYSTEMS

Béla Finta
"Petru Maior" University of Tg. Mureş, Romania
e-mail: fintab@science.upm.ro

Abstract

The purpose of this paper is to extend the classical gradient method, known for nonlinear systems with n equations and n unknowns, to overdetermined nonlinear systems.

Keywords: gradient method, overdetermined nonlinear system

1 Introduction

It is well known the gradient method for nonlinear systems with n equations and n unknowns, see for example [1] and [2]. The notion of overdetermined nonlinear system and its solution as the best least squares approximate is introduced for example in [3], or more recently for example in [4]. The purpose of this paper is to extend the gradient method for overdetermined nonlinear systems. We mention that in [5] we extended the gradient method, known for linear systems of type Cramer, to overdetermined linear systems. In [6] we do the comparative efficiencies of the least squares method and the gradient method for overdetermined linear systems.

2 Main part

Let $G_{1}, G_{2}, \ldots, G_{m}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}, D \neq \emptyset$ be given functions and $G=\left(G_{1}, G_{2}, \ldots, G_{m}\right): D \subset$ $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. We can attache to this function G the following nonlinear system:

$$
\begin{equation*}
G(x)=\theta, \tag{1}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in D$ and $\theta \in \mathbb{R}^{m}$ is the null element. If $m>n$ then we say that the nonlinear system (1) is overdetermined. Generally the overdetermined nonlinear system does not have solution, i.e. doesn't exist $x^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right) \in D$ such that $G\left(x^{*}\right)=\theta$. We build the function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by the formula $f(x)=\sum_{i=1}^{m}\left(G_{i}(x)\right)^{2}$. It is obvious that $f(x) \geq 0$ for all $x \in D$. We want to determine
$\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right) \in D$ such that $f(\bar{x})$ be a local minimal, i.e. $f(\bar{x}) \leq f(x)$, for all $x \in V \subset D$, where V is an appropiate neighborhood of \bar{x}. This point \bar{x} we accept like a solution of the overdetermined nonlinear equation (1) in the same sense of the least squares. Next we present the gradient method for the function f in order to obtain $\bar{x} \in D$.

Let us choose the initial point $x^{0}=$ $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right) \in V \subset D$. We suppose that we already realized to obtain the point $x^{k}=\left(x_{1}^{k}, x_{2}^{k}, \ldots, x_{n}^{k}\right) \in V$ and we want to get the next point $x^{k+1}=\left(x_{1}^{k+1}, x_{2}^{k+1}, \ldots, x_{n}^{k+1}\right) \in V$ by the gradient method. We consider the function $F_{k}:\left[0, M_{k}\right) \rightarrow \mathbb{R}$ given by the formula:

$$
\begin{aligned}
F_{k}(t) & =f\left(x^{k}-t \cdot \operatorname{grad} f\left(x^{k}\right)\right)= \\
& =\sum_{i=1}^{m}\left[G_{i}\left(x^{k}-t \cdot \operatorname{grad} f\left(x^{k}\right)\right]^{2},\right.
\end{aligned}
$$

where

$$
\operatorname{grad} f(x)=\left(\frac{\partial f}{\partial x_{1}}(x), \frac{\partial f}{\partial x_{2}}(x), \ldots, \frac{\partial f}{\partial x_{n}}(x)\right)
$$

is the gradient of the function f in point x. Here we fixed the value $M_{k} \in[0,+\infty) \cup\{+\infty\}$ such that the functions G_{i} and f are well defined, i.e. $x^{k}-$ $t \cdot \operatorname{grad} f\left(x^{k}\right) \in V$ for all $t \in\left[0, M_{k}\right)$. We suppose that all functions $G_{i}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}, i=\overline{1, m}$ are differentiable on the open subset $D \subset \mathbb{R}^{n}$. So we can consider the Taylor's expansions of the functions G_{i}, $i=\overline{1, m}$ in the point x^{k} and we take only the linear
term:

$$
\begin{aligned}
& G_{i}\left(x^{k}-t \cdot \operatorname{grad} f\left(x^{k}\right)\right)= \\
& =G_{i}\left(x^{k}\right)+D G_{i}\left(x^{k}\right)\left(-t \cdot \operatorname{grad} f\left(x^{k}\right)\right)
\end{aligned}
$$

where $D G_{i}\left(x^{k}\right)$ is the differential of the function G_{i} at point x^{k} and $D G_{i}\left(x^{k}\right)\left(-t \cdot \operatorname{grad} f\left(x^{k}\right)\right)$ is the above described differential function in the value $-t$. $\operatorname{grad} f\left(x^{k}\right)$. Now we use the representation of the differential by partial derivatives:

$$
\begin{aligned}
& G_{i}\left(x^{k}-t \cdot \operatorname{grad} f\left(x^{k}\right)\right)= \\
& =G_{i}\left(x^{k}\right)+\sum_{j=1}^{n} \frac{\partial G_{i}}{\partial x_{j}}\left(x^{k}\right)\left(-t \cdot \frac{\partial f}{\partial x_{j}}\left(x^{k}\right)\right)= \\
& =G_{i}\left(x^{k}\right)-t \cdot<\operatorname{grad} G_{i}\left(x^{k}\right), \operatorname{grad} f\left(x^{k}\right)>_{n},
\end{aligned}
$$

where $<\cdot, \cdot>_{n}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the standard scalar product on the space \mathbb{R}^{n}, given by the formula: $<x, y>_{n}=\sum_{i=1}^{n} x_{i} y_{i}$, with $x=\left(x_{i}\right)_{i=\overline{1, n}} \in \mathbb{R}^{n}$ and $y=\left(y_{i}\right)_{i=\overline{1, n}} \in \mathbb{R}^{n}$. So we get $F_{k}(t)=\sum_{i=1}^{m}\left[G_{i}\left(x^{k}\right)-\right.$ $\left.t .<\operatorname{grad} G_{i}\left(x^{k}\right), \operatorname{grad} f\left(x^{k}\right)>_{n}\right]^{2}$. Now we want to determine such positive value $t \geq 0$ for which F_{k} takes the minimal value. We calculate:

$$
\begin{aligned}
\frac{d F_{k}(t)}{d t} & =\sum_{i=1}^{m} 2 \cdot\left[G_{i}\left(x^{k}\right)-\right. \\
& \left.-t \cdot<\operatorname{grad} G_{i}\left(x^{k}\right), \operatorname{grad} f\left(x^{k}\right)>_{n}\right] \\
& \cdot\left[-<\operatorname{grad} G_{i}\left(x^{k}\right), \operatorname{grad} f\left(x^{k}\right)>_{n}\right] .
\end{aligned}
$$

The minimal value for $t \geq 0$ we obtain from the equation $\frac{d F_{k}(t)}{d t}=0$. So:

$$
\begin{aligned}
& \sum_{i=1}^{m} G_{i}\left(x^{k}\right) \cdot<\operatorname{grad} G_{i}\left(x^{k}\right), \operatorname{grad} f\left(x^{k}\right)>_{n}- \\
& -t \cdot \sum_{i=1}^{m}\left[<\operatorname{grad} G_{i}\left(x^{k}\right), \operatorname{grad} f\left(x^{k}\right)>_{n}\right]^{2}=0 .
\end{aligned}
$$

At the end we get the solution for $t=t_{k}$:

$$
t_{k}=\frac{\sum_{i=1}^{m} G_{i}\left(x^{k}\right) \cdot<\operatorname{grad} G_{i}\left(x^{k}\right), \operatorname{grad} f\left(x^{k}\right)>_{n}}{\sum_{i=1}^{m}\left[<\operatorname{grad} G_{i}\left(x^{k}\right), \operatorname{grad} f\left(x^{k}\right)>_{n}\right]^{2}}
$$

From the equality $f(x)=\sum_{i=1}^{m}\left(G_{i}(x)\right)^{2}$ results:

$$
\operatorname{grad} f(x)=\left(\begin{array}{c}
\sum_{i=1}^{m} 2 \cdot G_{i}(x) \cdot \frac{\partial G_{i}}{\partial x_{1}}(x) \\
\sum_{i=1}^{m} 2 \cdot G_{i}(x) \cdot \frac{\partial G_{i}}{\partial x_{2}}(x) \\
\vdots \\
\sum_{i=1}^{m} 2 \cdot G_{i}(x) \cdot \frac{\partial G_{i}}{\partial x_{n}}(x)
\end{array}\right)=
$$

$$
\begin{aligned}
& =2 \cdot\left(\begin{array}{cccc}
\frac{\partial G_{1}}{\partial x_{1}}(x) & \frac{\partial G_{2}}{\partial x_{1}}(x) & \ldots & \frac{\partial G_{m}}{\partial x_{1}}(x) \\
\frac{\partial G_{1}}{\partial x_{2}}(x) & \frac{\partial G_{2}}{\partial x_{2}}(x) & \ldots & \frac{\partial G_{m}}{\partial x_{2}}(x) \\
\vdots & & & \\
\frac{\partial G_{1}}{\partial x_{n}}(x) & \frac{\partial G_{2}}{\partial x_{n}}(x) & \ldots & \frac{\partial G_{m}}{\partial x_{n}}(x)
\end{array}\right) . \\
& \left(\begin{array}{c}
G_{1}(x) \\
G_{2}(x) \\
\vdots \\
G_{m}(x)
\end{array}\right)= \\
& =2 \cdot\left(\begin{array}{cccc}
\frac{\partial G_{1}}{\partial x_{1}}(x) & \frac{\partial G_{1}}{\partial x_{2}}(x) & \ldots & \frac{\partial G_{1}}{\partial x_{n}}(x) \\
\frac{\partial G_{2}}{\partial x_{1}}(x) & \frac{\partial G_{2}}{\partial x_{2}}(x) & \ldots & \frac{\partial G_{2}}{\partial x_{n}}(x) \\
\vdots & & & \\
\frac{\partial G_{m}}{\partial x_{1}}(x) & \frac{\partial G_{m}}{\partial x_{2}}(x) & \ldots & \frac{\partial G_{m}}{\partial x_{n}}(x)
\end{array}\right)^{T} . \\
& \left(\begin{array}{c}
G_{1}(x) \\
G_{2}(x) \\
\vdots \\
G_{m}(x)
\end{array}\right)= \\
& =2 \cdot\left(G^{\prime}(x)\right)^{T} \cdot G(x),
\end{aligned}
$$

where $G^{\prime}(x)$ is the Jacobi matrix of the function G in the point x. Consequently:

$$
G^{\prime}(x)=\left(\begin{array}{c}
\operatorname{grad} G_{1}(x) \\
\operatorname{grad} G_{2}(x) \\
\vdots \\
\operatorname{grad} G_{m}(x)
\end{array}\right)
$$

Therefore, if we take the matrix multiplication:

$$
\begin{aligned}
& G^{\prime}\left(x^{k}\right) \cdot \operatorname{grad} f\left(x^{k}\right)= \\
& =\left(\begin{array}{c}
<\operatorname{grad} G_{1}\left(x^{k}\right), \operatorname{grad} f\left(x^{k}\right)>_{n} \\
<\operatorname{grad} G_{2}\left(x^{k}\right), \operatorname{grad} f\left(x^{k}\right)>_{n} \\
\vdots \\
<\operatorname{grad} G_{m}\left(x^{k}\right), \operatorname{grad} f\left(x^{k}\right)>_{n}
\end{array}\right)
\end{aligned}
$$

then
$t_{k}=\frac{<G\left(x^{k}\right), G^{\prime}\left(x^{k}\right) \cdot \operatorname{grad} f\left(x^{k}\right)>_{m}}{<G^{\prime}\left(x^{k}\right) \cdot \operatorname{grad} f\left(x^{k}\right), G^{\prime}\left(x^{k}\right) \cdot \operatorname{grad} f\left(x^{k}\right)>_{m}}$.
But grad $f\left(x^{k}\right)=2 \cdot\left(G^{\prime}\left(x^{k}\right)\right)^{T} \cdot G\left(x^{k}\right)$, so

$$
\begin{aligned}
t_{k}= & <G\left(x^{k}\right), 2 \cdot G^{\prime}\left(x^{k}\right) \cdot\left(G^{\prime}\left(x^{k}\right)\right)^{T} \cdot G\left(x^{k}\right)>_{m} / \\
& /<G^{\prime}\left(x^{k}\right) \cdot 2 \cdot\left(G^{\prime}\left(x^{k}\right)\right)^{T} \cdot G\left(x^{k}\right), \\
& G^{\prime}\left(x^{k}\right) \cdot 2 \cdot\left(G^{\prime}\left(x^{k}\right)\right)^{T} \cdot G\left(x^{k}\right)>_{m}= \\
= & \frac{1}{2}<G\left(x^{k}\right), G^{\prime}\left(x^{k}\right) \cdot\left(G^{\prime}\left(x^{k}\right)\right)^{T} \cdot G\left(x^{k}\right)>_{m} / \\
& /<G^{\prime}\left(x^{k}\right) \cdot\left(G^{\prime}\left(x^{k}\right)\right)^{T} \cdot G\left(x^{k}\right) \\
& G^{\prime}\left(x^{k}\right) \cdot\left(G^{\prime}\left(x^{k}\right)\right)^{T} \cdot G\left(x^{k}\right)>_{m}
\end{aligned}
$$

From this formula we can see immediately that $t_{k} \geq 0$, being the quotient of two positive numbers. We suppose in plus that $t_{k} \in\left[0, M_{k}\right)$, too. This means that:

$$
\begin{aligned}
x^{k+1} & =x^{k}-t_{k} \cdot \operatorname{grad} f\left(x^{k}\right)= \\
& =x^{k}-t_{k} \cdot 2 \cdot\left(G^{\prime}\left(x^{k}\right)\right)^{T} \cdot G\left(x^{k}\right) .
\end{aligned}
$$

Let us denote by

$$
\begin{gathered}
\alpha_{k}=<G\left(x^{k}\right), G^{\prime}\left(x^{k}\right) \cdot\left(G^{\prime}\left(x^{k}\right)\right)^{T} \cdot G\left(x^{k}\right)>_{m} / \\
/<G^{\prime}\left(x^{k}\right) \cdot\left(G^{\prime}\left(x^{k}\right)\right)^{T} \cdot G\left(x^{k}\right), \\
G^{\prime}\left(x^{k}\right) \cdot\left(G^{\prime}\left(x^{k}\right)\right)^{T} \cdot G\left(x^{k}\right)>_{m}
\end{gathered}
$$

and at the end we obtain the iteration

$$
\begin{aligned}
x^{k+1} & =x^{k}-\frac{1}{2} \cdot \alpha_{k} \cdot 2 \cdot\left(G^{\prime}\left(x^{k}\right)\right)^{T} \cdot G\left(x^{k}\right)= \\
& =x^{k}-\alpha_{k} \cdot\left(G^{\prime}\left(x^{k}\right)\right)^{T} \cdot G\left(x^{k}\right) .
\end{aligned}
$$

3 Conclusion

We can observe that the gradient method presented above for overdetermined nonlinear systems $(m>$ n) is valid for the welldetermined nonlinear systems ($m=n$) and for the underdetermined nonlinear systems $(m<n)$, too.

Next we consider $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, G(x)=A \cdot x-b$, where A is a matrix with m rows and n columns, x and b are column matrices with n and m rows, respectively. Then $G^{\prime}(x)=A$ and $G(x)=\theta$ means $A \cdot x=b$. Hence we obtain for the overdetermined linear system $A \cdot x=b,(m>n)$ the solution using the gradient method by the iteration:

$$
x^{k+1}=x^{k}-\alpha_{k} \cdot A^{T} \cdot\left(A \cdot x^{k}-b\right),
$$

where
$\alpha_{k}=\frac{<A \cdot x^{k}-b, A \cdot A^{T} \cdot\left(A \cdot x^{k}-b\right)>_{m}}{<A \cdot A^{T} \cdot\left(A \cdot x^{k}-b\right), A \cdot A^{T} \cdot\left(A \cdot x^{k}-b\right)>_{m}}$, see [5].

Concerning the order of convergence of the gradient method for overdetermined nonlinear systems we will deduce in the next paper.

References

[1] B. Finta, Analiză numerică, Editura Universităţii „Petru Maior", Tg. Mureş, 2004.
[2] S. S. Rao, Applied Numerical Methods for Engineers and Scientists, Prentice Hall, Upper Saddle River, New Jersey, 2002.
[3] R. Fletcher, Practical Methods of Optimisation, Volume 1, Unconstrained Optimisation, John Wiley \& Sons, 1980, page 110.
[4] Wenyu Sun, Ya-Xiang Yuan, Optimisation Theory and Methods - Nonlinear Programming, Springer, 2006, page 353.
[5] B. Finta, The Gradient Method for Overdetermined Linear Systems, Scientific Bulletin of the „Petru Maior" University of Tg. Mureş, Vol. 7 (XXIV), no. 1, 2010, pp. 24-26, ISSN 1841-9267.
[6] B. Finta, Comparative Efficiencies of the Least Squares Method and the Gradient Method for Overdetermined Linear Systems, Scientific Bulletin of the „Petru Maior" University of Tg. Mureş, Vol. 7 (XXIV), no. 2, 2010, pp. 35-36, ISSN 1841-9267.

