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ABSTRACT

The purpose of this paper is to extend the classical gradient method, known for nonlinear
systems with n equations and n unknowns, to overdetermined nonlinear systems.
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1 Introduction

It is well known the gradient method for nonlinear
systems with n equations and n unknowns, see for ex-
ample [1] and [2]. The notion of overdetermined non-
linear system and its solution as the best least squares
approximate is introduced for example in [3], or more
recently for example in [4]. The purpose of this paper
is to extend the gradient method for overdetermined
nonlinear systems. We mention that in [5] we extended
the gradient method, known for linear systems of type
Cramer, to overdetermined linear systems. In [6] we
do the comparative efficiencies of the least squares
method and the gradient method for overdetermined
linear systems.

2 Main part

Let G1, G2, . . . , Gm : D ⊂ Rn → R, D ̸= ∅ be
given functions and G = (G1, G2, . . . , Gm) : D ⊂
Rn → Rm. We can attache to this function G the fol-
lowing nonlinear system:

G(x) = θ, (1)

where x = (x1, x2, . . . , xn) ∈ D and θ ∈ Rm is the
null element. If m > n then we say that the nonlinear
system (1) is overdetermined. Generally the overde-
termined nonlinear system does not have solution, i.e.
doesn’t exist x∗ = (x∗

1, x
∗
2, . . . , x

∗
n) ∈ D such that

G(x∗) = θ. We build the function f : D ⊂ Rn → R

given by the formula f(x) =
m∑
i=1

(Gi(x))
2. It is obvi-

ous that f(x) ≥ 0 for all x ∈ D. We want to determine

x = (x1, x2, . . . , xn) ∈ D such that f(x) be a local
minimal, i.e. f(x) ≤ f(x), for all x ∈ V ⊂ D, where
V is an appropiate neighborhood of x. This point x we
accept like a solution of the overdetermined nonlin-
ear equation (1) in the same sense of the least squares.
Next we present the gradient method for the function
f in order to obtain x ∈ D.

Let us choose the initial point x0 =
(x0

1, x
0
2, . . . , x

0
n) ∈ V ⊂ D. We suppose

that we already realized to obtain the point
xk = (xk

1 , x
k
2 , . . . , x

k
n) ∈ V and we want to get

the next point xk+1 = (xk+1
1 , xk+1

2 , . . . , xk+1
n ) ∈ V

by the gradient method. We consider the function
Fk : [0,Mk) → R given by the formula:

Fk(t) = f(xk − t · grad f(xk)) =

=

m∑
i=1

[Gi(x
k − t · grad f(xk)]2,

where

grad f(x) =
(

∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

)
is the gradient of the function f in point x. Here we
fixed the value Mk ∈ [0,+∞) ∪ {+∞} such that
the functions Gi and f are well defined, i.e. xk −
t · gradf(xk) ∈ V for all t ∈ [0,Mk). We suppose
that all functions Gi : D ⊂ Rn → R, i = 1,m are
differentiable on the open subset D ⊂ Rn. So we can
consider the Taylor’s expansions of the functions Gi,
i = 1,m in the point xk and we take only the linear
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term:

Gi(x
k − t · grad f(xk)) =

= Gi(x
k) +DGi(x

k)(−t · grad f(xk)),

where DGi(x
k) is the differential of the function

Gi at point xk and DGi(x
k)(−t · grad f(xk)) is the

above described differential function in the value −t ·
grad f(xk). Now we use the representation of the dif-
ferential by partial derivatives:

Gi(x
k − t · grad f(xk)) =

= Gi(x
k) +

n∑
j=1

∂Gi

∂xj
(xk)

(
−t · ∂f

∂xj
(xk)

)
=

= Gi(x
k)− t· < gradGi(x

k), grad f(xk) >n,

where < ·, · >n: Rn × Rn → R is the standard
scalar product on the space Rn, given by the formula:

< x, y >n=
n∑

i=1

xiyi, with x = (xi)i=1,n ∈ Rn and

y = (yi)i=1,n ∈ Rn. So we get Fk(t) =
m∑
i=1

[Gi(x
k)−

t· < gradGi(x
k), grad f(xk) >n]

2. Now we want to
determine such positive value t ≥ 0 for which Fk takes
the minimal value. We calculate:

dFk(t)

dt
=

m∑
i=1

2 · [Gi(x
k)−

− t· < gradGi(x
k), grad f(xk) >n]·

· [− < gradGi(x
k), grad f(xk) >n].

The minimal value for t ≥ 0 we obtain from the
equation dFk(t)

dt = 0. So:

m∑
i=1

Gi(x
k)· < gradGi(x

k), grad f(xk) >n −

− t ·
m∑
i=1

[< gradGi(x
k), grad f(xk) >n]

2 = 0.

At the end we get the solution for t = tk :

tk =

m∑
i=1

Gi(x
k)· < gradGi(x

k), grad f(xk) >n

m∑
i=1

[< gradGi(xk), grad f(xk) >n]2
.

From the equality f(x) =
m∑
i=1

(Gi(x))
2 results:

grad f(x) =



m∑
i=1

2 ·Gi(x) · ∂Gi

∂x1
(x)

m∑
i=1

2 ·Gi(x) · ∂Gi

∂x2
(x)

...
m∑
i=1

2 ·Gi(x) · ∂Gi

∂xn
(x)


=

= 2 ·


∂G1

∂x1
(x) ∂G2

∂x1
(x) . . . ∂Gm

∂x1
(x)

∂G1

∂x2
(x) ∂G2

∂x2
(x) . . . ∂Gm

∂x2
(x)

...
∂G1

∂xn
(x) ∂G2

∂xn
(x) . . . ∂Gm

∂xn
(x)

 ·

·


G1(x)
G2(x)

...
Gm(x)

 =

= 2 ·


∂G1

∂x1
(x) ∂G1

∂x2
(x) . . . ∂G1

∂xn
(x)

∂G2

∂x1
(x) ∂G2

∂x2
(x) . . . ∂G2

∂xn
(x)

...
∂Gm

∂x1
(x) ∂Gm

∂x2
(x) . . . ∂Gm

∂xn
(x)


T

·

·


G1(x)
G2(x)

...
Gm(x)

 =

= 2 · (G′(x))T ·G(x),

where G′(x) is the Jacobi matrix of the function G in
the point x. Consequently:

G′(x) =


gradG1(x)
gradG2(x)

...
gradGm(x)

 .

Therefore, if we take the matrix multiplication:

G′(xk) · grad f(xk) =

=


< gradG1(x

k), grad f(xk) >n

< gradG2(x
k), grad f(xk) >n

...
< gradGm(xk), grad f(xk) >n


then

tk =
< G(xk), G′(xk) · grad f(xk) >m

< G′(xk) · grad f(xk), G′(xk) · grad f(xk) >m
.

But grad f(xk) = 2 · (G′(xk))T ·G(xk), so

tk =< G(xk), 2 ·G′(xk) · (G′(xk))T ·G(xk) >m /

/ < G′(xk) · 2 · (G′(xk))T ·G(xk),

G′(xk) · 2 · (G′(xk))T ·G(xk) >m=

=
1

2
< G(xk), G′(xk) · (G′(xk))T ·G(xk) >m /

/ < G′(xk) · (G′(xk))T ·G(xk),

G′(xk) · (G′(xk))T ·G(xk) >m .

From this formula we can see immediately that tk ≥ 0,
being the quotient of two positive numbers. We sup-
pose in plus that tk ∈ [0,Mk), too. This means that:

xk+1 = xk − tk · grad f(xk) =

= xk − tk · 2 · (G′(xk))T ·G(xk).
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Let us denote by

αk =< G(xk), G′(xk) · (G′(xk))T ·G(xk) >m /

/ < G′(xk) · (G′(xk))T ·G(xk),

G′(xk) · (G′(xk))T ·G(xk) >m

and at the end we obtain the iteration

xk+1 = xk − 1

2
· αk · 2 · (G′(xk))T ·G(xk) =

= xk − αk · (G′(xk))T ·G(xk).

3 Conclusion

We can observe that the gradient method presented
above for overdetermined nonlinear systems (m >
n) is valid for the welldetermined nonlinear systems
(m = n) and for the underdetermined nonlinear sys-
tems (m < n), too.

Next we consider G : Rn → Rm, G(x) = A ·x−b,
where A is a matrix with m rows and n columns, x and
b are column matrices with n and m rows, respectively.
Then G′(x) = A and G(x) = θ means A · x = b.
Hence we obtain for the overdetermined linear system
A · x = b, (m > n) the solution using the gradient
method by the iteration:

xk+1 = xk − αk ·AT · (A · xk − b),

where

αk =
< A · xk − b, A ·AT · (A · xk − b) >m

< A ·AT · (A · xk − b), A ·AT · (A · xk − b) >m
,

see [5].
Concerning the order of convergence of the gradi-

ent method for overdetermined nonlinear systems we
will deduce in the next paper.
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