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ABSTRACT 

In general, in an automatic daylight control application, the automatic lighting control 

system (ALCS) attempt (due to the controller presence) to maintain constant the 

illuminance at a desired level even the daylight illuminance is variable. The paper 

describes the design, the implementation and the tuning of a CMAC (Cerebellar Model 

Articulation Controller) type controller used in an automatic daylight control system, 

where the lighting process is implemented by a halogen lamp. After the tuning of CMAC 

controller, is presented the behaviour of the ALCS when the illuminance is disturbed by a 

supplementary electric light source (a halogen desk lamp). Even the applied control 

structure uses a gross approximation of the real inverse model of process the ALCS will 

have a good behaviour achieving the imposed performances for an automatic control 

system used in this specific application. 
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1. Introduction 

Nowadays, the artificial intelligence is widely 

used in research in the automatic process control 

domain. The Cerebellar Model Articulation Controller 

(CMAC) proposed by Albus in [1] as a model of the 

information processing activities within the 

cerebellum [13] has its special place in the 

researchers’ attentions. This type of artificial neural 

network is preferred due to its local generalization, 

extremely fast learning speed and easy 

implementation in software and hardware [11],[15]. In 

the last decade different training algorithms for 

CMAC neural network as functions, data mapping 

approximator or in control applications was 

investigate. In [15] was proposed the Credit-

Assignment CMAC (CA-CMAC) algorithm to reduce 

learning interference in conventional CMAC. In [10] 

is used the algorithm of CMAC-RLS, which applies 

recursive least square algorithm (RLS) to update the 

weights of CMAC and proved to be a good tool for on 

line modeling. In [11] a simplified algorithm of 

CMAC-RLS named CMAC-QRLS is proposed for 

reducing the computation time, reducing memory 

storage, and improving the numerical stability of the 

CMAC. In [12] was proposed a hybrid maximum 

error algorithm with neighborhood training for 

CMAC and proved in an inverse kinematics problem 

of a two-link robot arm In [14] was proved that a 

CMAC can universally approximate a smooth 

function and its derivatives and in [2] is used the 

CMAC structure as nonlinear function approximator. 

In [8] the first author of the present paper used and 

studied the CMAC controller with Gaussian basis 

functions to control the same process used in the 

present paper. 

In section 2 is presented the control structure, 

the experimental model of the process used by the 

control structure and the experimental stand used for 

experimentations. In section 3 is described shortly the 

general structure of the CMAC neural network and is 

presented the structure of the controller. In section 4 

is presented experimental results related to the 

controller tuning and the behaviour of the automatic 

lighting control system (ALCS) in the presence of 

perturbations. 

 

2. The control system configuration and the 

experimental stand 

The control structure applied to the lighting 

process is depicted in Fig. 1 where, are denoted with: 

Edesired – the desired illuminance; Emeasured – the 

measured illuminance; Ereal – the illuminance; Edaylight 

– the daylight illuminance; Eelectric – the illuminance 

due to electric light;  - control error;  - change in 

control error; U – control action; GE – scaling gain 

for the  input of controller; GCE - scaling gain for 
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the  input of controller; GU - scaling gain for the 

output of controller (variation in commnad U). 

Implementing the controller as incremental 

type [9] the control action is calculated by: 

GUkTUTkTUkTU  )()()(                         (1) 

 

 
Fig. 1. The block diagram of the control system [8] 

 

The  and   are given by: 

 

     kTEkTEkT measureddesired                              (2) 

 

     TkTkTkT                                       (3) 

 

where T is the sampling time. 

The model of the process is unknown. For this 

purpose it was used an experimental model. The 

experimental direct model of process, a look up table 

(LUT) of measured data at the input and the output of 

process, is presented in Fig. 2. 
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Fig. 2. The experimental model of the process (the 

direct model) [8] 

 

The transformation given by the LUT is not 

single-valued. The experimental inverse model of 

process is the LUT of the output and the input data of 

the process which transform the interval [0,186] 

(lxd8bv) in the interval [89, 196] (Vd8bv). The meaning 

of notation d8bv is “digital 8 bits value”. A value 

followed by the unit which incorporate the notation 

“d8bv” represent the value of the measured signal 

converted by an 8 bits AD converter in case of 

measured illumnance and a digital 8 bits value which 

will be converted in an analogical signal by an 8 bits 

DA converter in case of the control action. 

Fig. 3 shows the experimental stand composed 

of: (1) calculation equipment (IBM compatible, PI, 

166MHz, 64Mb RAM), (2) execution element, (3) the 

technological installation based on one 40W halogen 

lamp, (4) light sensor, (5) data acquisition board with 

two 8-byte conversion channels (an A/D channel, a 

D/A channel); (6) a halogen desk lamp used for 

generating the perturbations, during the night or 

constant daylight conditions. 

 
Fig. 3. The experimental stand [8] 

 

The illuminance on the desk surface represents 

the sum of the illuminances produced by the halogen 

lamp no. 3 (electric light) and the halogen lamp no. 6 

(the perturbation). 

 

3. The CMAC controller 

3.1 The CMAC algorithm 
The CMAC algorithm can be decomposed into 

two separate mappings. The first is a nonlinear, 

topology conserving transformation that maps the 

network’s input into a higher dimensional space, in 

which only a small number of the variables have a 

non-zero output. Thus the CMAC produces a sparse 

internal representation of the input vector. The 

designer must specify a generalisation parameter, ρ, 

which determines the number of non-zero variables in 

the hidden layer, and also specifies the size of the 

network’s internal region that influences its response. 

The second transformation gives a linear combination 

of the non-zero variables from the hidden layer.[3] 

The network’s n-dimensional input is denoted 

by x (Fig. 4), and network’s sparse internal 

representation is denoted by the p-dimensional vector 

a (Fig. 4); this vector is called the transformed input 

vector or the basis function output vector. The 

transformed input vector, a, has as elements the 

outputs of the basis functions in the hidden layer and 

the output, y, of the CMAC network is formed from 

linear combination of these basis functions. [3] 

 

 

Fig. 4. General structure of CMAC[3] 
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3.2 The CMAC controller 

The controller is implemented using a CMAC 

network with two inputs and one output. The design 

choices for CMAC controller are: 

- control error () and the change in control 

error () are the input variables of controller; 

- the variation in command (U) is the output 

variable of the CMAC controller; 

- the basis functions are implemented with 

triangular function type (Fig. 5a); 

       
a)    b) 

Fig. 5. Triangular basis function: a) one-dimensional; 

b) two-dimensional 

 

- the generalization parameter of CMAC,  

(which give the number of the over layers attached to 

the universe of discourse of each input and an 

important information about the width of the base of 

each basis function) is set to value 3; 

- on each layer, the basis functions (one-

dimensional functions) attached to   and those 

attached to  are together connected using the 

linguistic and resulting bi-dimensional basis 

functions. Using the product operator to implement 

the connector and the bi-dimensional basis functions 

will have the shape like the one depicted in Fig. 5b; 

- each over layer attached to an input variable 

it was divide in  equal intervals by 5 interior knots 

(Fig. 6); the width of each basis function was 

determined multiplying the width of an interval by the 

value of generalization parameter ; 

 

 
Fig. 6. The displacement of the basis functions on the 

overlays attached to the inputs of controller when 

d=(1,2) and =3 (the ticks mark represent the output 

of the basis functions when  = 60 (lxd8bv) and          

 = 40(lxd8bv)) 

 

- the overlay displacement vector is set to 

d=(1,2), the basis functions displacement for each 

input of controller are presented in Fig. 6; 

- the universe of discourse for the input 

variable  was settled to the range [-95,160] (lxd8bv). 

Considering the desired illuminance on the desk 

surface settled to 160 (lxd8bv) the universe of discourse 

of  was determined as follow: replacing in (2) the 

value of desired illuminance and the minimum 

converted value of measured illuminance with 8 bits 

D/A converter (0(lxd8bv)) it is getting the maximum 

value 160(lxd8bv) of universe of discourse and  

replacing in (2) the value of desired illuminance and 

the maximum converted value of measured 

illuminance with 8 bits D/A converter (255(lxd8bv)) it 

is getting the minimum value -95(lxd8bv) of universe 

of discourse. 

- the universe of discourse for the input 

variable  are set experimentally to the range                         

[-95,160] (lxd8bv). The decrease of the universe of 

discourse range will produces an increase of the 

transient response duration (Fig. 7). 

 

 
Fig. 7. Step response family of the ALCS when the 

range of the universe of discourse of   is variable 

(GE=GCE=GU=1, learning rate  = 0.9) 

 

4. The controller tuning and 

experimentation 

Before the tuning of CMAC controller the 

influence of the learning rate, , was studied. In Fig. 

8, Fig. 9, Fig. 10 and Fig. 11 is presented the step 

response family of the ALCS when the learning rate is 

variable and the scaling gains are constant 

(GE=GCE=GU=1). The desired illuminance is set to 

Edesired = 160 (lx_d8bv). In literature, for learning rate, 

are recommended values in the interval (0.0, 1.0). In 

present paper, the range of the learning rate values is 

set to (0, 9]. Analyzing the step response family from 

Fig. 8, the increase of the learning rate from 0.01 to 

0.4 will produce the decrease of the time delay and 

the increase of the overshot. The increase of the 

learning rate, from 0.4 to 5 (Fig. 9 and Fig. 10), will 

produce the decrease of the time delay and the 

decrease of the transient response duration, but the 

overshoot is relative constant, having values around 

12.5% of Edesired. If the learning rate  is increased 

over 4 (Fig. 10 and Fig. 11) the ALCS instability 

signs appear, the ALCS will be totally instable for  = 

9. In order to avoid the big overshoot values and the 

instable behaviour of the ALCS, the range of the 

learning rate values is recommended to be (0, 0.3]. 
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Fig. 8. Step response family of the ALCS 

(GE=GCE=GU=1, learning rate  = 0.01÷0.4) 

 

 

 
Fig. 9. Step response family of the ALCS 

(GE=GCE=GU=1, learning rate  = 0.4÷0.9) 

 

 

 
Fig. 10. Step response family of the ALCS              

(GE = GCE = GU = 1, learning rate  = 1÷5) 

 

 

 
Fig. 11. Step response family of the ALCS              

(GE = GCE = GU = 1, learning rate  = 5÷9) 

 
 

The tuning of the CMAC controller was done 

using the tuning via universes of discourse method 

presented in [9] and applied in lighting control in 

[6],[7]. This type of tuning method was selected due 

to the similarities of the CMAC network with a fuzzy 

system. In case of a fuzzy system the input variables 

values after fuzzyfication (usual singleton 

fuzzyfication [5]) are mapped to membership degree 

given by membership functions.  

In case of a CMAC network the input variables 

values are mapped to the values given by the basis 

functions; these values can be viewed like the 

membership degree used in case of the fuzzy system. 
The tuning procedure is applied as follow: 

generate a step response family of the ALCS keeping 

constant two scaling gains and modifying the third 

scaling gain. In this manner are generated three types 

of step response families (one for GE variable, one for 

GCE variable, and one for GU variable). 

In Fig. 12, Fig. 13, Fig. 14, Fig. 15 and Fig.16 

are presented the step response families when the 

scaling gain GE is variable and the scaling gains GCE 

and GU are constant. For all these step response 

families the scaling gain GU is set to 0.5. The scaling 

gain GCE is set to 0.1 for the step response families 

from Fig. 12, Fig. 13,  Fig. 14, Fig. 15 and is set to 1 

for the step response family from Fig. 16. The 

increase of the GE from 0.1 to 0.4 (Fig. 12) will 

reduce the time delay and the transient response 

duration; the increase of GE from 0.6 to 0.8 (Fig. 13) 

will increase the time delay and the transient response 

duration and, will reduce the overshot; the increase of 

GE from 0.8 to 1 (Fig. 14) will reduce the time delay 

and the transient response duration and, will limit the 

overshot to values smallest as 5% Edesired; the increase 

of GE over unity (Fig. 15 and Fig. 16), will increase 

the overshoot.  

 

 
Fig. 12. Step response family of the ALCS (GE = 

0.1÷0.4, GCE = 0.1, GU = 0.5, learning rate  = 0.3) 

 

 

 
Fig. 13. Step response family of the ALCS (GE = 

0.6÷0.8, GCE = 0.1, GU = 0.5, learning rate  = 0.3) 
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Fig. 14. Step response family of the ALCS (GE = 

0.8÷1, GCE = 0.1, GU = 0.5, learning rate  = 0.3) 

 

 

 
Fig. 15. Step response family of the ALCS (GE=1÷10, 

GCE=0.1, GU=0.5, learning rate =0.3) 

 

 

 
Fig. 16. Step response family of the ALCS (GE = 

1÷10, GCE = 1, GU = 0.5, learning rate  = 0.3) 

 

 

In order to avoid big values for overshoot the 

proportion between scaling gains GE and GCE is 

recommended to satisfy the relation (Fig. 15 and 

Fig.16): 

 

10
GCE

GE
.                                                   (4) 

 

In Fig. 17 and Fig. 18 are presented the step 

response families when the scaling gain GCE is 

variable and the scaling gains GE and GU are 

constant. Analyzing these step response families the 

increase of the GCE will decrease the overshoot and 

the transient response duration. 

 

 
Fig. 17. Step response family of the ALCS (GE = 1, 

GCE = 0.1÷0.9, GU = 0.5, learning rate  = 0.3) 

 

 

 
Fig. 18. Step response family of the ALCS (GE = 10, 

GCE = 1÷10, GU = 0.5, learning rate  = 0.3) 

 

 

In Fig. 19 and Fig. 20 are presented the step 

response families when the scaling gain GU is 

variable and the scaling gains GE and GCE are 

constant. Analyzing the step response families from 

Fig.19 and Fig. 20, the increase of the GU will 

decrease the time delay and the transient response 

duration, and increase the overshoot. 

 
Fig. 19. Step response family of the ALCS (GE = 1, 

GCE =1, GU = 0.1÷0.5, learning rate  = 0.3) 

 

 

 
Fig. 20. Step response family of the ALCS (GE = 1, 

GCE =1, GU = 0.7÷10, learning rate  = 0.3) 
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Analyzing the step response of the ALCS 

when GE=4, GCE=1 and GU=0.5 (Fig. 16) the 

overshoot was calculated to be 1.875%Edesired. 

Keeping GE=4, GCE=1 and selecting the GU=0.25 a 

couple of proportions between the scaling gains were 

calculated to be: 

 

4
GCE

GE                                                          (5) 

 

4
GU

GCE .                                                        (6) 

 

Keeping constant the proportions (5), (6) and 

modifying GE, a step response family of the ALCS 

was acquired and depicted in Fig. 21. Analyzing the 

step response family the overshot will be smaller or 

equal to 5%Edesired even the scaling gains are variable. 

The increase of scaling gains will reduce the time 

delay and the transient response period. 

 

 
Fig. 21. Step response family of the ALCS 

((GE,GCE,GU) = (0.8,0.4,0.05)÷(10,2.5,0.625), 

learning rate  = 0.3) 

 

From Fig. 21 it was chosen two sets of values 

for (GE, GCE, GU): (0.8, 0.2, 0.05) and (10, 2.5, 

0.625). For these sets of  values was tested the 

stability of the ALCS when the illuminance on the 

desk surface was disturbed by the additional 

illuminance produced by the incandescent lamp 

denoted by 6 in Fig. 3. The shape of the disturbance 

signal is presented in Fig. 22. The ALCS is stable, 

according to Fig. 23 and Fig. 24. 
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Fig. 22. The shape of perturbation signal 
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Fig. 23. The behavior of the ALCS ((GE,GCE,GU) = 

(0.8,0.2,0.05)) when is applied the perturbation signal 
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Fig. 24. The behavior of the ALCS ((GE,GCE,GU) = 

(10,2.5,0.625)) when is applied the perturbation 

signal 

 

 
5. Conclusions 

Using proper proportions between scaling 

gains applied to the inputs and the output of CMAC 

controller, the ALCS meet the desired performances. 

The modifications of one scaling gain (maintaining 

the same proper proportion between the scaling gains) 

allows the user of the ALCS to set the own reaction of 

the system to the variation of daylight. This feature 

allows the use of the ALCS for two different types of 

applications. The first type, represent those 

applications where, from the human eye perception 

point of view, the illuminance must be constant (for 

example design laboratory). The second type, 

represent those applications where, the users need to 

feel the changes in the light environment due to the 

natural variations of daylight (for example office and 

home applications). 

Unfortunately the finding of the proper 

proportions between the scaling gains requests time 

effort (the step response families was acquired during 

night conditions) and experience. 
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