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ABSTRACT 
This paper presents the design of a sub-optimal H∞ robust controller for the position 

control of an unloading machine, from a rotary hearth furnace. In the modeling of  the 

positioning system, the mass of the unloading machine was taken as an approximation of 

the real value, introducing uncertainties in the position control. In this case, a robust 

controller was designed using multiplicative uncertainties in order to improve the 

unloading rate of the furnace. The plant behavior for the nominal case, the perturbed 

parameters cases and the  robustness of the controller is validated by simulation. 
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1.  Introduction 

The rotary hearth furnace is the first important 

aggregate in the technological flow of the hot rolling 

process [1]. The main role of this furnace is to heat up 

blocks of billets from the ambient temperature to the 

rolling temperature, which is about 1250
○
C [2]. The 

furnace consists of five regulating temperature 

sectors, a sector for preheating, and a sector for 

charging and discharging billets [3]. For the loading 

and unloading process the furnace is equipped with a 

loading machine and an unloading one. The furnace’s 

hearth is rotated and its rotation regime can be jerky 

with stops, at fixed or continuous angles. When the 

hearth stops the machines load, respectively unload, 

the block of billets from the furnace. 

 

Fig. 1 – The unloading machine representation 

 

The unloading or the loading machine from 

Tenaris Silcotub Zalau is essentially a trolley that 

moves on a rail way track. The fig. 1 shows the 

schematic representation of the unloading machine 

that has a long arm with a clamp at the furnace end. 

The clamp is design to catch the billet right in the 

middle according to its length and it is designed to 

have one fixed and one movable jaw. The robotic arm 

has to be positioned correctly over a billet in order for 

the clamp to catch it [4]. To ensure the entrance of the 

clamp jaws the minimum distance between two 

adjacent billets inside the furnace is 100 mm, and in 

addition to avoid deteriorating the billets. 

The distance between the initial position of the 

machine and the position of the billet on to the 

furnace hearth is known according to the loading 

scheme. An incremental encoder is used in order to 

measure the machine’s distance from the initial 

position to the billet’s position inside de furnace. 

An issue that appears during the billets 

unloading process is that a very precise brake is 

needed for the rotary hearth in order to stop the billet 

exactly at the position of the unloading rail way axis. 

Because of this, at the outlet door of the furnace, the 

billet has a small displacement from the rail way axis. 

In order to positionate the clamp over the billet, the 

unloading arm is able to rotate around a static point, 

allowing a horizontal movement of 300 – 400 mm. 

Since the distance obtained by the rotation of the arm 

is small compared to the billets length, the motion is 

approximated by a linear movement. 

For obtaining a correct positioning of the 

clamp over the unloading billet, an automated control 

system is used to control the horizontal unloading 

arm movement. The position control system, 

implemented at Tenaris Silcotub Zalau uses a PID 

controller for the unloading arm movement. The 

current control system performances are an overshoot 

of 11% and a settling time of 2 seconds.   

The goal of this paper is to improve the 

unloading rate of the furnace, which means 

decreasing the current settling time, by designing a 

sub – optimal H∞ controller. To the authors best 

knowledge we are the first to treat this issue. 

 

mailto:iuliainoan@yahoo.com
mailto:tibor.szelitzky@aut.utcluj.ro


39 

 

2.  Mathematical model for the unloading 

machine’s positioning system  

The horizontal positioning system for the 

unloading arm consists of a cylinder which is 

controlled using a proportional directional valve.   

The electro-hydraulic proportional valve used 

is manufactured by Bosch Rexroth, and it consists in 

a directly controlled valve with integrated control 

electronics. The nominal working flow amounts to 75 

l/min at 10 bar valve pressure differential [5]. The 

hydraulic cylinder is manufactured by Parker Hannif 

Corporation and it is a type MP3 from MMA duty 

series. It was designed for service in steel mills and it 

has a a minimum stroke of 25 mm and a maximum 

stroke of 150 mm [6]. 

The position of the cylinder is measured with a 

linear transducer. The measurement signal is used to 

determine the displacemnt of the arm from the rail 

way axis in milimeters unit. The linear encoder is 

manufactured by Gefran and it can measure 

displacement or speed. The sampling time of the 

typical position read is 1 ms [7]. 

Due to constituent elements of the positioning 

system for the unloading arm, the system is 

considered to be an electro-hydraulic axis and for 

consideration of time constants we take into account 

only the dynamics of the hydraulic part, through the 

main equations described below [8]. 

Linear equation of servo valves: 

Q C mQ K x K p                            (1) 

Equation of flow conservation: 
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Mechanical equation of motion: 
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Where: KQ – flow gain, Kc – flow-pressure 

coefficient of the proportional valve, ΔQ – flow 

differential, Δx – billet displacement, Δpm – pressure 

differential, S – piston area, α – overall rate of oil 

loss, VT – total oil volume, Δy – output size (arm 

displacement), E – coefficient of oil elasticity, m – 

mass of the piston and the load, f – viscous damping 

coefficient, FR – static force strength. 

By applying the Laplace transformation to (1) 

- (3), and by neglecting the parameters α, Kc, and FR 

the mathematical model (4) was obtained: 
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From (4) the state space representation was 

obtained: 
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The mathematical and the state space model 

parameters are defined as follows: 
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The mass of the unloading machine was 

calculated by multiplying its density with an 

approximated volume. The state space parameters 

were obtained by replacing the parameters with the 

values from the data sheets and considering the 

aproximated value of the mass. The following values 

were obtained. 
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3.  H∞ robust control design  

The main goal of a robust control is designing 

a controller that stabilises the process not only for its 

nominal parameters values, but for the case in which 

the system parameters vary within certain limits also. 

The controller and the controlled plant must satisfy 

certain performance requirements like: low 

overshoot, short settling time and also disturbance 

rejection. In order to satisfy the above requirement we 

designed and simulated a H∞ robust control. 

The robust H∞ otpimization investigation 

began with the consideration of minimizing the ∞-

norm of the sensitivity function of a single-input 

single-output linear feedback system [9]. It was soon 

extended to more general problems, when the 

stability robustness criterion confirmed the relevance 

of the ∞-norm for robustness [10]. The H∞ controller 

is an effective and efficient robust design method for 

linear systems and it ensures robust performance in 

response to both external disturbances and parameter 

uncertainty [11].  

The H∞ sub-optimal controller design consists 

in finding a controller K, for which the H∞ norm of 

the closed loop transfer function will be less than a 

given positive number [12]. The controller has to 

ensure robust stability for the closed loop system, 

good tracking, attenuate the influence of the 

exogenous input signals on the controller signal and 

to reject the noise [13]. The H∞ robust control design 

consists in finding a controller that minimize the 

lower linear fractional transformation (LFT) for both 

the plant, and the controller F(G,K) [14]. 

( ) ( , )J K F G K  
                 (8) 

In order to design the robust controller the 

augmented plant mathematical model (G) described 

by the following state space equations has to be 

constructed.  
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Here x is the state variable vector, v the 

exogenous inputs vector, u is the control input vector, 

z is the vector of the signals that are considered to be 

important for the closed-loop performance, while y is 

the vector of measurements. The matrix form of the 

augmented plant model is: 
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In order to obtain better performances for the 

closed-loop system weighting functions (W) can be 

added:  
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The sensitivity function S (12) characterizez 

the sensitivity of the control system output to 

disturbances. To limit the control signal the KS 

sensitivity was introduced. 
1)(  GKIS            (12) 

 

4.  Robust control for the unloading 

positioning system 

The H∞ suboptimal controller design begins 

with the state-space representation of the positioning 

system for the unloading machine describe by (5). 

Figure 2 shows the block representation for the state 

space system’s model. 
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Fig. 2 -  Block representation for the system model 

 

The model parameters (7) are considered to be 

the nominal values for the state space model of the 

unloading arm positioning system. It was considered 

that the mass can vary ±20% and, thus, the model 

parameters ω and ξ can vary up to ±10%. The 

uncertain parameters ω and ξ may be represented as 

follows: 
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where 
N , 

N  are the nominal values that 

can be found in (7), while p , p  are the maximum 

relative uncertainties, and  , [-1,1] being the 

relative variations, which means that the parameters 

ω and ξ vary by ±10%. The parameters ω and ξ may 

be represented as a lower LFT:  
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For the uncertain parameters blocks containing 

the parameter ω, or the parameter ξ, from fig. 2, will 

be replaced with the group of block like the ones in 

fig. 3 or in fig. 4.  
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Fig. 3 -  Block for ω parameter with uncertainties 
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Fig. 4 -  Block for ξ parameter with uncertainties 

 

The equations coresponding to the blocks in 

fig. 3 and in fig. 4 are: 
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By replacing each parameter block from fig. 2, 

we obtaine five exogenous inputs: uω1, uω2, uω3, uζ1, 

uω4, and five important signals: yω1, yω2, yω3, yζ1, yω4.  

The equations that governs the dynamic 

behaviour of the system with perturbed parameters 

are: 
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From the above equations the augmented plan 

model G is obtained, and it coresponds to the state 

space representation (9). 
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In order to ensure good disturbance 

attenuation and good transient response, weighting 

functions were added.  

The following two weighting functions were 

obtained iteratively, starting with the weighting 

functions [15]: 
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The coefficients were adjusted until the 

systems transient response for the nominal values had 

the required performances. 

The transformation from the state-space 

representation to the transfer fucntion representation 

is given by: 
1( ) ( )fH s C sI A B               (21) 

Considering the plant agumented model (19), 

the weighting functions (20), and the transformation 

(21), we obtained the H∞ sub-optimal controller: 
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5.  Simulation results for the closed-loop 

position control system 

The H∞ suboptimal controller was determined 

using the Robust Control Toolbox within MATLAB 

7.6 [16]. The system’s outputs were also ploted using 

MATLAB, by simulating the closed-loop position 

control system that has on the direct path the H∞ sub-

optimal controller and the state space mathematical 

model for the unloading machine. 

 For the assessments of the performance of the 

closed-loop robust positioning system for the nominal 

case, the step response for a 1 mm billet displacement 

was simulated as shown in fig. 5. 

 

 
Fig. 5 – Robust positioning system step 

response for the nominal case 
 

The settling time for the position control system is 

aproximately 1.6 s, compared with the 2 s settling 

time in the case of the current PID position control 

system. The overshoot is 5%, lower than the current 

one of 11%. The closed loop system has no stationary 

error.  

Figure 6 shows the step responses for the 

perturbed and for the nominal system. It can be seen 

the overlapping of the responses for the ±10% 

perturbed system, ±5% perturbed system, and the 

nominal system step response. We applied the 8 mm 

positive reference and the -6 mm negative reference 

which can be related to a billet displacement to the 

right of the rail way axis for the positive reference, 

and a billet displacement to the left of the rail way 

axis, for the negative setpoint. 

 The performances for the closed-loop 

positioning system remain the same even if the 

machine’s mass varies up to ±20%. 

In order to demonstrate the robust 

performances in response to external disturbaces the 

±10% perturbed system, the ±5% perturbed system 

outputs for a 2 mm step disturbance are presented in 

fig. 7. The robust positioning controller rejects the 

disturbance in about 1.5 s. 
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Fig. 6 - Closed loop step responses for the nominal and the perturbed systems 

 

 

Fig. 7 - Transient responses for a 2 mm 

disturbance 

 

Figure 8 shows the inverse of performance 

wieghting function and the nominal sensitivity plot. 

From this plot we observe that for low frequencies the 

closed-loop system must attenuate the output 

disturbance. The stability of the nominal, and the 

perturbed, system is proved by the sensitivity 

function of the closed-loop system being lower than 

the inverse of the weighting function 

 

 
Fig. 8 -  Inverse of performance weighting function 

 

6.  Conclusion 

In this paper, the control of a horizontal 

positioning system for an unloadin machine with 

uncertainties in parameters is considered. In the 

simulation studies of the system dynamic behaviour 

the state space mathematical model of the system has 

been used. For the task of designing a robust H∞ 

suboptimal controller an uncertain model has been 

derived from the state space position model. 

The application of linear robust control design 

techniques on an unloading machine positioning 

system resulted in a controller that is able accordind 

to simulation to decrease the settling time from 2 s to 

1.6 s and to improve the billets unloading rate from 

the furnace with 20%. The controller is also able to 

decrease the system’s overshoot by approximately 

50%. 

The robustness of the controller designs is 

validated by simulation. The resulting robust 

controller guarantees stability and better 

performances for the closed-loop system. 
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