
 

 

94 

 

IMPLEMENTATION OF DIGITAL FILTERS IN FPGA 

STRUCTURES 

Mózes Ferenc-Emil, Germán-Salló Zoltán 
Petru Maior University of Tirgu-Mureş 

mozes.ferenc.emil@gmail.com, zgerman@engineering.upm.ro 

ABSTRACT 
Filtering is the most common task in digital signal processing, when some particular 

parameters of the input signal are removed or modified and a new signal is obtained at 

the output. The most common filtering goal is to remove noise from a signal. Digital 

filtering deals with discrete sequences, their implementation require both soft and hard 

solutions. This work focuses on some useful methods to implement digital filters in 

reconfigurable hardware structures, as FPGAs. This paper presents FIR filters of 

different order and structures, and using the MathWorks® tools, shows how these 

structures can be mapped to the Xilinx® FPGA architecture. The implemented digital 

filters are evaluated through signal to noise ratio and root mean square error between 

the filtered and the noisy signal.  

Keywords: digital filter, FPGA, FIR filter 

 
1.  Introduction 

Filtering is a fundamental aspect of signal 

processing which performs direct manipulations on 

the frequency band of signals, removing undesirable 

parts as noise or extracting useful components. There 

are two main types of filter, analog and digital, they 

are very different in physical structure and function. 

An analog filter uses analog electronic circuits made 

up from components such as resistors, capacitors and 

operational amplifiers to produce the required 

filtering effect. A digital filter uses a digital processor 

to perform numerical calculations on sampled values 

of the signal. They can achieve better performance 

than analog filters (limited by the accuracy of their 

electronic components), can easily be changed 

without affecting the circuitry (hardware). An analog 

filter can only be changed by redesigning the filter 

circuit. Digital filters are build from three basic 

elements: an adder, a multiplier and a delay element 

and can be implemented using either a block diagram 

or a signal flow graph. Recently the Field 

Programmable Gate Arrays (FPGAs) became one of 

the most preferred platform for evaluating and 

implementing signal processing algorithms. They 

have special features, like embedded multipliers, 

dedicated DSP circuitry, scalability and re-

configurability therefore they are one of the most  

attractive platforms for advanced signal processing 

algorithms [1, 6]. Some engineering tools like 

MATLAB have enabled the design of various digital 

filter structures in a faster and more accurate way 

with the possibility of implementation in FPGAs. The 

second part of this work presents briefly the most 

common digital filter structures and some 

possibilities to implement them. The proposed 

implementation and structures are shown in the third 

part. Experimental results obtained with different 

structures on test signal are presented in the fourth 

section. Finally, the conclusions show some possible 

directions for further work. 

 

2.  Digital filter realizations 

The Fourier transform theory says that the 

linear convolution of two sequences in the time 

domain is the same as multiplication of two 

corresponding spectral sequences in the frequency 

domain. Therefore filtering is in the multiplication of 

the signal spectrum by the frequency domain impulse 

response of the filter. Usually a digital filter is a 

simple discrete-time, discrete-amplitude convolver 

which performs a convolution of the time domain 

impulse response and the discrete (sampled) signal. 

There are two types of digital filters: a non-recursive 

(known as an FIR or Finite Impulse Response filter) 

and a recursive (named IIR or Infinite Impulse 

Response) filter [3, 4]. An FIR type has the output as 

a convolution between the input sequence and the 

impulse response of filter: 

 
   







1

0

)(

N

k

knxkbny  (1) 

A large percentage of filters implemented in 

the digital domain are Finite Impulse Response (FIR) 

filters. These filters are used over a wide range of 

sample rates and are supported in terms of software 

tools, and FPGA IP cores. An FIR filter is usually 



 

95 

 

implemented by using a series of delays, multipliers, 

and adders in order to have the desired filter's output. 

Another type of digital filter is the Infinite 

Impulse Response (IIR) filter, which has the output 

 

 
     











1

0

1

0

)()(

M

k

N

k

knykbknxkany  (2) 
 

 

As it can be seen, portions of the output are 

returned to be recomputed "over and over" by the 

same few coefficients, meaning that IIR structure 

uses feedback [3, 4]. 

Structurally, FIR filters consist of two 

elements: a sample delay line and a set of 

coefficients. To implement the filter, the input sample 

is put into the delay line, each sample is multiplied by 

the corresponding coefficient and the result is 

accumulated, after that the delay line is shifted by one 

sample to make room for the next input sample [6]. 

This is the serial direct form, presented in fig. 1. 

 

 
Fig. 1 – Serial Direct Form FIR filter 

 

Another implementation structure called the 

transposed form FIR filter, where data samples are 

applied in parallel to all the tap multipliers through 

pipeline registers is shown in fig. 2. The products are 

applied to a cascaded chain of registered adders. 

 

 
Fig. 2 – Transposed FIR filter 

3.  The Implementation procedure 

The Filter Design and Analysis Tool (FDA 

Tool) is a graphical user interface (GUI) available in 

the Signal Processing Toolbox of MATLAB for 

designing and analyzing filters. The FDA Tool uses 

double precision floating point representation for the 

design calculations. This allows the tool to achieve a 

fair degree of precision, which is reflected in the 

close-to-ideal response of the reference filter. This 

tool along with the Simulink HDL Coder is a 

powerful utility to generate HDL versions of the 

designed filters. 

In the first place a model only using 

Simulink’s common blocks and the FDATool block 

from the Signal Processing Toolbox was designed. 

This can be seen in fig. 3. 

 

 
Fig. 3 – Filter simulation model 

 
To evaluate the performances of the designed 

filter model, a sine wave was used as a test signal 

with known added noise. This made possible to 

compute the signal to noise ratio and filtering error. 

This model was later built using Xilinx’s System 

Generator blocks from Simulink, created with the 

purpose to be transferable to FPGAs [5]. 

Five low-pass filters of different order (8, 12, 

16, 20, 24) were designed using FDA Tool, with the 

following parameters: Fs = 4 kHz, Fpass = 100 Hz, 

Fstop = 300 Hz. Figure 4 presents the specifications of 

the 24
th

 order filter, i.e. the magnitude and phase 

response in the specified frequency domain. 

 

 
Fig. 4 – Magnitude and phase response of the 24

th
 

order filter 

 

The designed filters were exported to VHDL 

models using the Simulink HDL Coder. The Black 

Box block from the System Generator blockset  

offered the possibility to simulate VHDL code within 

Simulink. Figure 5 shows the obtained model. 

 



 

96 

 

4.  Results 

A 100 Hz frequency sine wave corrupted with 

a uniform noise was considered as input for the five 

filters. The signal to noise ratio, the gain and the 

resulting error were calculated in case of every filter. 

Equation 3 was used to calculate the signal to noise 

ratio, while the error was obtained using equation 4. 

 

 

nf

f

ss

s

dB
P

P
SNR



 lg10  (3) 

 





N

i

f isis
N 1

2])[][(
1

  (4) 

 

fsP  denotes the power of the filtered signal, 

nf ssP   is the power of the difference between the 

filtered signal and the noisy signal (this difference is 

 the estimated noise) and s  is the original, 

uncorrupted sine wave. 

Figure 6 shows the input signal and the output 

of the filters. 

 

Table 1 Measurement results 

Filter order SNR [dB] Error 

8 7.0390 0.0780 

12 11.5297 0.0592 

16 11.7168 0.0573 

20 12.4403 0.0569 

24 12.8034 0.0561 

 

 
Fig. 6 – The original signal and the different 

filtered signals 

 

Figures 7 and 8 were are based on the values 

from table 1. Figure 7 shows the values of the signal 

to noise ratios for each filter. It can be observed that 

the higher the filter order is, the higher the signal to 

noise ratio becomes. 

Fig. 5 – Simulink model of a FIR filter, using Xilinx’s System Generator blocks 

 



 

97 

 

 
Fig. 7 – The obtained signal to nosie ratio values 

 
Figure 8 shows the evolution of the error 

during the filtering process.  

 
Fig. 8 – The obtained error for each of the filters 

 

 

5. Conclusions 

The filters were synthesized for the Spartan 3E 

FPGA produced by Xilinx. Table 2 contains the 

resource utilization statistics for the 24
th

 order FIR 

filter. 

 

Table 2 Resource utilization 

Resource name Used Available Percentage 

Slice Flip Flops 961 17344 4 % 

Slices 856 8672 9 % 

4 input LUTs 843 17344 4 % 

MULT18X18SIOs 1 28 3 % 

 
FIR filters are most widely used in FPGA 

implementations because they have linear phase. 

Compared to IIR filters, FIR filters have simple and 

regular structures which are easy to implement on 

hardware. However FIR filters require higher number 

of taps compared to IIR filters to achieve the same 

frequency specifications. 

 

References  
 [1] Vahid, F. – Digital Design with RTL Design, 

VHDL and Verilog, John Wiley & Sons Inc. USA, 

2011 

[2] Bose, T. – Digital Signal and Image Processing, 

John Wiley & Sons Inc. USA, 2004 

[3] Smith, S. W. – Digital Signal Processing A 

Practical Guide for Engineers and Scientists, 

Newnes, 2003 

[4] Oppenheim, A. V. , Schafer, R. W. – Discrete 

Time Signal Processing, Prentice Hall, 1989 

[5] Loomis, H.H., Sinha, B. – High Speed Recursive 

Digital Filter Realization Circuits, Systems and 

Signal Processing, Vol. 3, pp. 267-294, 1984 

[6] Meyer – Baese, U. – Digital Signal Processing 

with Field Programmable Gate Arrays (Signals and 

Communication Technology) 3
rd

 Edition, Springer, 

2007

  


