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1 Remarkable classes of sets and positive
measures

In the following we define several classes of sets: alge-
bra of sets, σ-algebra of sets, σ-algebra of Borel sets on a
topological space.

Definition 1. A class of sets on X is a part nonempty of
P(X).

Definition 2. A class of sets R on X it is called ring of sets,
provided that, from A,B ∈ R it follows that A ∪ B ∈ R
and A \B ∈ R.

Definition 3. A class of sets A will be called algebra of sets
provided that it holds:

1. X ∈ A
2. For any A,B ∈ A we have A∪B ∈ A and A\B ∈ A.

Definition 4. An A algebra will be called σ algebra if
for any family (An)n≥1 included in A it follows that
∪n≥1An ∈ A.

It’s clear that the set of parts of X (i.e. P(X)) is a σ-
algebra of sets and intersection of a family of σ-algebras is
also a σ-algebra of sets.

If A is a class of sets we denote by σ(A) the intersection
of the family of σ-algebras of sets including A. This class
of sets is the smallest σ-algebra of sets including A and is
called σ-algebra generated by A.

Definition 5. Let X be a topological space and T (F) the
open (resp. closed) sets of X. We denote by B(X) the σ-
algebra generated by T . Elements of B(X) is called the
Borel sets on X. Obviously F ⊂ B(X) and B(X) is also
the σ-algebra generated by F .

2 Positive measures

Let X be a set and let A be a σ-algebra on X.

Definition 6. A function µ : A → R+ is called a positive
measure if µ(ϕ) = 0 and for any sequence (An)n included
in A such that An∩Am = ∅ whenever n ̸= m we have that
µ (

∪∞
n=1 An) =

∑∞
n=1 µ(An).

We denote by M+(A) the set of positive measures on
A. From the definition the following assertions hold:

1. µ is finite additive, i.e. if A,B ∈ A, such that A∩B =
ϕ it follows that µ(A ∪B) = µ(A) + µ(B).

2. µ is increasing. i.e. A,B ∈ A, such that A ⊂ B it
follows that µ(A) ≤ µ(B), and if µ(A) < ∞ then we get
µ(B \A) = µ(B)− µ(A).

Proposition 1. Let µ ∈ M+(A) be and (An)n a sequence
of A. The following assertions hold:

a) An ↑ A, A ∈ A it follows that µ(An) ↑ µ(A);
b) An ↓ A, A ∈ A and infn µ(An) < +∞ it follows

that µ(An) ↓ µ(A).

Remark 1. If µ : A → R+ is a finite additive function
then affirmation a) from above proposition is a necessary
and sufficient condition that µ to be a measure on A. If
moreover µ is finite then b) affirmation from above propo-
sition represents also a necessary and sufficient condition
that µ to be a measure on A.

So, we consider the set of natural numbers N, A =
P(N) and the function µ : A → R, µ(A) ={
0, if A is finite
+∞, if A is infinite.

Indeed the function µ is additive

finite, has verified b) but is not a measure.
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3 Lebesgue measure on R

Let R be the set of real numbers. We denote by

S = {[a, b) | a ∈ R, b ∈ R}.

We denote by µ the function µ : S → R+, defined by
µ([a, b)) = b− a.

Definition 7. It is called Lebesgue outer measure the func-
tion

µ∗ :

{
A ⊂ R | (∃) (En)n∈N ⊂ S,

∪
n∈N

En ⊃ A

}
→ R+

defined by

µ∗(A) = inf

{∑
n∈N

µ(En) |
∪
n∈N

En ⊃ A, (En)n∈N ∈ S

}

Remark 2. Since R =
∪

n[−n, n) =
∪

n∈Z[n, n + 1) we
have {A ⊂ R | (∃) (En)n∈N ⊂ S,

∪
n En ⊃ A} = P(R).

Hence µ∗ : P(R) → R+.

Theorem 1. The Lebesgue outer measure holds the follow-
ing properties:

1. µ∗(ϕ) = 0
2. A ⊂ B ⊂ R ⇒ µ∗(A) ≤ µ∗(B)
3. (An)n∈N ⊂ P(R) ⇒ µ∗(

∪
n∈N An) ≤∑

n∈N µ∗(An)
4. A ⊂ R, t ∈ R ⇒ µ∗(A+ t) = µ∗(A)
5. µ∗ | S = µ.

Definition 8. A subset E ⊂ R is called Lebesgue measur-
able if the following equality holds:

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ CE), for any A ∈ P(R)

Remark 3. Since µ∗ is increasing the equality is equivalent
by inequality µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A ∩ CE). Hence
equality is not trivial only for A ∈ P(R) with µ∗(A) <
+∞.

We denote by L = {E ∈ P(R) | E is Lebesgue measur-
able}.

Theorem 2. For the couple (L, µ∗) the following assertions
hold:

1. E,F ∈ L we get E ∪ F ∈ L
2. E,F ∈ L we get F \ E ∈ L
3. (En)n∈N ⊂ L we get

∪
n∈N En ∈ L

4. µ∗ | L is a positive measure
5. E ∈ P(R), µ∗(E) = 0, F ⊂ E we get F ∈ L and

µ∗(F ) = 0
6. S ⊂ L.
7. for any E ∈ L we get {x+ t | x ∈ E} = E + t ∈ L,

for any t ∈ R.

Conclusion 1. From above Theorem it follows that the
Lebesgue measurable sets L form a σ-algebra which in-
cludes S and µ∗ |L is a positive measure.

Remark 4. Restriction of µ∗ to L is called induced measure
by µ∗ and was noted by µ.

Remark 5. The set S and the function µ have the following
properties:

1. E,F ∈ S ⇒ E ∩ F ∈ S
2. E,F ∈ S ⇒ E − F =

∪p
k=1 Ek, (Ek)1≤k≤p ⊂ S,

Ei ∩Ej = ϕ.
3. F ∈ S, F = F1 ∪ F2, F1 ∈ S, F2 ∈ S, F1 ∩ F2 = ϕ

it follows that µ(F ) = µ(F1) + µ(F2).

4 Special properties of Lebesgue measure
and measurability

We denote by µ restriction of outer Lebesgue measure to
class of Lebesgue measurable sets and will call µ Lebesgue
measure. We denote by L the sets Lebesgue measurable.

We denote by B the Borel sets on R.
Any Borel set is Lebesgue measurable.
Lebesgue measure is only measure σ-finite on B whose

restriction to S is the length intervals.
For any subset of R with outer Lebesgue measure finite

there exists a Borel subset which contains and which has the
same outer measure.

Any Lebesgue measurable set is reunion of a Borel set
and a subset a Borel set of null Lebesgue measure.

For any Lebesgue measurable subset A of R with outer
Lebesgue measure finite and for any ε > 0 there exists a
finite reunion of intervals from S which differ to A whose
outer Lebesgue measure is smaller than ε.

Lebesgue measure coincide with outer measures induced
by restrictions of Lebesgue measure to I(S), B,L we have

µ∗(A) = inf{µ(E) | A ⊂ E,E ∈ B}
= inf{µ(M) | A ⊂ M,M ∈ L}.

Theorem 3. Let DR be topology of R, FR be the closed
sets of R,

I1 = {(a, b) | a, b ∈ R}; I2 = {(a, b] | a, b ∈ R},
I3 = {[a, b] | a, b ∈ R}, I4 = {[a,+∞) | a ∈ R},
I5 = {(a,+∞) | a ∈ R}, I6 = {(−∞, a] | a ∈ R},
I7 = {(−∞, a) | a ∈ R}.

Then B = σ(DR) = σ(FR) = σ(Ik) for any k, 1 ≤ k ≤ 7.

Corollary 1. R is a Borel set, {x} is a Borel set for any
x ∈ R and any subset at most countable of R is Borel set.

The outer Lebesgue measure is µ∗(A) = inf{µ(D) |
A ⊂ D,D ∈ DR}, for any A ⊂ R.

Any at most countable set of R has Lebesgue measure
null.
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5 Measurable functions

5.1 Simple functions

Proposition 2. Let X be a set. For every subset A of E we
denote by 1A the characteristic function of A (i.e. the func-
tion equal 1 on A and 0 on X \A). The following assertions
hold:

1. φA = 0 if and only if A = ∅; φA = 1 if and only if
A = X.

2. φA ≤ φB if and only if A ⊆ B
3. φA = φB if and only if A = B.
4. φA∪B = φA + φB − φA · φB

5. φA∩B = φA · φB

6. φA\B = φA(1− φB)
7. φA∪B = φA + φB if and only if A ∩B = ∅
8. φA△B = φA + φB − 2φA · φB .

Definition 9. Let A be a σ-algebra on X (i.e. A is a σ-ring
and X ∈ A). A function f : X → R is called simple (i.e
A-simple) if f =

∑n
i=1 ciφAi with (ci)i=1mn ⊆ R and

(Ai)i=1,n a partition of X with sets of A.

Remark 6. The condition as family (Ai)i=1,n to be par-
tition of X not is essential we can consider (Ai)i=1,n an
arbitrary family of X.

Examples. 1. The constant functions are simples. 2. The
function sign, the function integer part on bounded interval
and heaviside function are simple. 3. The Dirichlet function
is simple (f = 1 · φQ + 0 · φR\Q).

Proposition 3. Let A be a σ-algebra on set X , X ∈ R and
f, g : X → R two simple functions. Then functions f ± g,
λf, f · g, |f |,max{f, g},min{f, g} are simple.

Corollary 2. Let f =
∑n

i=1 ciφAi , ci ∈ R and Ai ∈ A
(i = 1, n). Then f is a simple function.

If X is a set, A is a σ-algebra on X and µ is a measure
on A then (X,A, µ) is called the space with measure.

Definition 10. Let (X,A, µ) be a space with measure and
P a propositional function defined on X i.e. for any x ∈ X,
P (x) is a proposition (true or false). We say that P is true
almost everywhere (a.e.) if P (x) is true for any x ∈ X \ A
with A ⊆ X negligible (i.e. µ(A) = 0).

Examples. 1. Let (X,A, µ) be a space with measure and
f : X → R a function. We say that f is finite a.e. if there
exists A ⊆ X negligible such that f is finite on X \ A i.e.
|f(x)| < +∞ for all x ∈ X \ A. 2. Let (X,A, µ) be a
space with measure, X being metrical space. A function
f : X → R will say it is continuous a.e. if there exists
A ⊆ X negligible such that f is continuous on X \ A. If
every Pn(n ≥ 1) is true a.e. then there exists A ⊆ X
negligible such that Pn(x) is true for all x ∈ X \ A and
n ≥ 1.

Definition 11. Let (X,A) be a measurable space, Y a met-
rical space, τY is the family of open sets of Y. We say that f
is A-measurable if f−1(τY ) ⊆ A i.e. f−1(G) ∈ A for all
G ⊆ Y, G open. If X = R and A = L (resp. A = B) then
f is called Lebesgue measurable (resp. Borel measurable).
We say that f is measurable on M ⊆ X (we can assume
that M ∈ A) if M ∩f−1(G) ∈ A, for all G ∈ τY ) |M⊆ A.

Examples. 1. The constant functions are measurable. 2.
Let X = [0, 1], A = {∅, [0, 1

2 ), [
1
2 , 1], [0, 1]} and f :

[0, 1] → R, f(x) = x2. Then f is not A-measurable, since
G = (0, 1) is open and f−1(G) ̸∈ A. 3. Let A ⊆ R a
Lebesgue m. set but is not Borel m. i.e. A ∈ L \ B and
f = 1A. Then f is Lebesgue m., but is not Borel m. In-
deed for any D ⊂ R, open we have f−1(G) equals with
A,CA,R, when D ∋ 1, D ̸∋ 0; D ∋ 0, D ̸∋ 1; D ∋ 0,
D ∋ 1. Therefore f−1(D) ∈ L and f−1(D) ̸∈ B if D ∋ 1
and D ̸∋ 0. etc.

Proposition 4. Let (X,A) a measurable space, X,Y two
metrical space, f : X → Y a measurable function and
g : Y → Z a continuous function. Then g◦f is measurable.

Remark 7. If f : R → R is continuous any g : R → R
Lebesgue measurable is not necessarily as g ◦ f Lebesgue
measurable.

Theorem 4. Let (X,A) a measurable space, Y a metrical
space, τY the open sets of Y and f : X → Y a function.
Then the following assertions are equivalent:

1. f measurable i.e. f−1(σY ) ⊆ A.
2. f−1(BY ) ⊆ A, where BY = σ(τY ) Borel sets of Y.
3. There exists C ⊆ 2Y with σ(C) = σ(τY ) (i.e. σ-

algebra generated by C coincides with Borel sets of Y ) such
that f−1(C) ⊆ A.

Proposition 5. Let (X,A) be a measurable space and f :
X → R a function. Then the following assertions are equiv-
alent.

1. f is measurable.
2. {x ∈ X | f(x) > α} ∈ A, for any α ∈ R.
3. {x ∈ X | f(x) ≥ α} ∈ A, for any α ∈ R.
4. {x ∈ X | f(x) < α} ∈ A, for any α ∈ R.
5. {x ∈ X | f(x) ≤ α} ∈ A, for any α ∈ R.

Corollary 3. Let (X,A) be a measurable space and f :
X → R a function. Then the following assertions hold:

1. {x ∈ X | f(x) = α} ∈ A, for any α ∈ R;
2. {x ∈ X | α < f(x) ≤ β} ∈ A, for any α, β ∈ R,

α < β;
3. {x ∈ X | α ≤ f(x) < β} ∈ A, for α, β ∈ R, α < β

etc.

Corollary 4. Let (X,A) a measurable space and f : X →
R a function. Then f is measurable on set A ∈ A if and
only if for any α ∈ R, A ∩ {x ∈ X | f(x) > α} ∈ A.
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Proposition 6. (The elementary properties of measurable
function). Let (X,A, µ) be a space with measurable and f :
X → R an arbitrary function. Then the following assertions
hold:

1. If f is constant then is measurable.
2. If f is measurable and A ∈ A it follows that f is

measurable on A.
3. If there exists (Ak)k∈K ⊆ A a family at most count-

able which cover X and f is measurable on Ak, for all
k ∈ K it follows that f is measurable.

4. If there exists (Ak)k∈K ⊆ A a family at most count-
able which cover X and f is constant on Ak, for all k ∈ K
it follows that f is measurable.

5. If there exists A ∈ A with f constant on A and mea-
surable on X \A it follows that f is measurable.

6. If µ is complete and A ∈ A is negligible results that
f is measurable on A.

7. If µ is complete and f is measurable, changing values
of f on a negligible set A ∈ A, the obtained function f̃ is
measurable.

Remark 8. The condition µ is complete from 6 and 7 is
essential.

Example. Let X = [0, 1], A = {∅, X}, A = [0, 1
2 ], f =

φA and µ : A → R, µ = 0. Then f = 0 µ a.e. and is not
measurable because {x ∈ X | f(x) > 0} = A ̸∈ A.

8. If f is measurable and f̃ : X → R is defined by

f̃(x) =

{
f(x), if |f(x)| < +∞
0, if |f(x)| = +∞

then f̃ is measurable.
9. If f is measurable and finite µ-a.e. it follows that the

above function f̃ is measurable and f = f̃ µ-a.e.
10. If f is measurable then sign(f) is measurable.

Corollary 5. Let (X,A) be a measurable space and 1A the
characteristic function of A, where A ⊆ X. Then 1A mea-
surable if and only if A ∈ A.

Corollary 6. Let (X,A) a measurable space f, g : X →
R two measurable functions, A ∈ A and h : X → R a
function defined by

h(x) =

{
f(x), if x ∈ A

g(x), if x ∈ X \A.

Then h is measurable.

Corollary 7. Let (X,A) be a measurable space and f :
X → R a measurable function. Then for any A ∈ A, a
function f · φA is measurable.

Corollary 8. Let (X,A, µ) be a space with measure, where
X is metrical space and τX ⊆ A. Then a function f :
X → R is measurable if and only if f is measurable on
each bounded and closed (resp. open) set of X.

Proposition 7. Let (X,A) be a measurable space and f :
A → R. Then f is simple if and only if f is measurable and
takes a finite number of values.

Example. Let M ⊆ R a Lebesgue measurable set and f :
M → R a continuous function µ-a.e. Then f is Lebesgue
measurable.

Proof. Let A be the set of discontinuities of f . Then f is
µ-negligible, hence A ∈ L and M \ A ∈ L. Let α ∈ R.
Obviously {x ∈ M | f(x) > α} = {x ∈ M \ A | f(x) >
α} ∪ {x ∈ A | f(x) > α} = M1 ∪M2. Since f is contin-
uous on M \A it follows that the set M1 is open in M \A,
hence there exists D ⊆ R open with D ∩ (M \ A) = M1

and hence M1 ∈ L, hence D and M \ A are in L. We
have M2 ⊆ A and λ(A) = 0, hence M2 ∈ L. Therefore
{x ∈ M | f(x) > α} = M1 ∪M2 ∈ L i.e. f is Lebesgue
measurable.

Proposition 8. Let (X,A, µ) be a space with complete
measure f, g : X → R, f = g, µ-a.e. If f is measurable
then g is measurable.

Remark 9. Condition µ complete is essential.

Example. Let ([0, 1],B |[0,1], µ) be the space with measure,
C ⊆ [0, 1] Cantor set and A ⊆ C a Lebesgue measurable
set and is not Borel measurable and f = φA. Then f = 0
µ-a.e. (because µ(C) = 0) and A = {x ∈ [0, 1] | f(x) >
1
2} ̸∈ B | |[0,1], hence f is not B |[0,1] measurable.

Theorem 5. Let (X,A) be a measurable space. The fol-
lowing assertions hold:

1. If f, g : X → R are measurable then functions f ± g,
λf, |f |, max{f, g},min{f, g}, f · g are measurable.

2. If fn : X → R, n ≥ 1 is a sequence of
measurable functions then functions supn≥1 fn, infn≥1 fn,

limn→∞fn, limn→∞fn are measurable.
3. If f, fn : X → R (n ≥ 1), where fn(n ≥ 1) are

measurable and fn
s→ f, then f is measurable.

Corollary 9. Let (X,A) be a measurable space and f, g :
X → R two measurable functions. Then function f + g is
measurable.

Corollary 10. Let (X,A) be a measurable space and f :
A → R a function. Then f is measurable if and only if
f+ = max{f, 0}, f− = max{−f, 0} are measurable.

Since f = f+ − f− the proof is obviously.
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Theorem 6. Let (X,A) a measurable space and f : X →
R a measurable function. Then there exists a sequence of
simple functions fn : X → R, (n ≥ 1) such that fn

s→ f.
If f is bounded (resp. f ≥ 0) the sequence (fn)n≥0 is
uniform convergent (resp. increasing).

Proof. We suppose f ≥ 0 and let fn : X → R (n ≥ 1) a
sequence of functions defined by:

fn(x) =

{
k−1
2n , k−1

2n ≤ f(x) < k
2n (k = 1, n · 2n)

n, f(x) ≥ n

We put A0 = {x ∈ X; f(x) ≥ n} and Ak = {x ∈ X |
k−1
2n ≤ f(x) < k

2n }, k ∈ 1, n− 2n where n ≥ 1 is fixed.
Obviously (Ak)k=0,n·2n is a measurable partition of X and

we have fn(x) =
∑n·2n

k=1
k−1
2n φAk

+ nA0, hence fn is a
simple function. It’s clear that fn+1 ≥ fn for all n ≥ 1.

If x ∈ X and there exists N natural with f(x) ≥ N it
follows that 0 ≤ f(x)− fn(x) ≤ 1

2n , for all n ≥ N, hence
fn(x) → f(x). Hence if 0 ≤ f ≤ N we deduce fn

u→ f.

If x ∈ X and f(x) = ∞, we have f(x) ≥ n, for all
n ≥ 1, hence fn(x) = n, for any n ≥ 1 and hence fn(x) →
f(x).

Therefore in both cases we have fn(x) → f(x), for all
x ∈ X. We suppose now f is arbitrary measurable. Then
f+ and f− are positive measurable and f = f+ − f−.
There exists fn, gn : X → R (n ≥ 1) two sequences of
simple functions with fn

s→ f+ and gn
s→ f−, therefore

hn = fn − gn (n ≥ 1) are simple and hn
s→ f.

Definition 12. Let (X,A, µ) be a space with measure and
fn : X → R (n ≥ 1) a sequence of functions, finite µ-
a.e. We say that sequence (fn)n≥1 converges µ-a.e. if there
exists A ⊆ X negligible and f : X → R such that the
numerical sequence (fn(x))n≥1 is convergent (in R) and

has limit f(x) for all x ∈ X \A. We write now fn
µ−a.e−→ f.

Remark 10. 1. If (fn)n≥1 is a sequence of functions finite

µ-a.e. and fn
µ−a.e−→ f then f is finite µ-a.e.

2. If sequence (fn)n≥1 converges µ-a.e. then function

limit is uniquely determinated µ-a.e., i.e. if fn
µ−a.e−→ f and

fn
µ−a.e−→ g then f = g µ-a.e.
3. If (fn)n≥1 is a sequence of functions finite µ-a.e. then

there exists A ⊆ X negligible such that each fn (n ≥ 1) is
finite on X \A.

Proposition 9. Let (X,A, µ) be a space with complete
measure and fn : X → R (n ≥ 1) a sequence of measur-
able, finite µ-a.e. functions which converges µ-a.e. Then
function limit f is measurable.

Remark 11. Condition µ complete is essential.

Example. Let X = [0, 1], A = {∅, X}, µ = 0, f = φ{0}

and fn = f, for all n ≥ 1. Then fn
µ−a.e−→ f, because

µ(X) = 0, but f is not measurable.

Definition 13. Let (X,A, µ) be a space with measure and
fn : X → R (n ≥ 1) a sequence of measurable functions,
f µ-a.e finite. We say that (fn)n≥1 converges almost uni-
formly (a.u.) if there exists f : X → R measurable such
that for any ε > 0 there exists Aε ∈ A with µ(Aε) < ε and
fn

u
X\Aε

f. We write then fn
a.u→ f.

Remark 12. If (fn)n≥1 converges a.u. to f not necessarily
it results that (fn)n≥1 converges uniformly µ-a.e. (i.e. a
complementary of a negligible set) to f.

Example. Let fn : R → R (n ≥ 1), fn = φAn , where
An =

(
1
n ,

2
n

)
. Then fn

a.u→ 0 and fn
µ−a.e−→ 0.

Proposition 10. Let (X,A, µ) be a space with measure,
fn : X → R (n ≥ 1) a sequence of measurable, finite µ-
a.e. functions and f : X → R a measurable function. If
fn

a.u→ f, then f is finite µ-a.e and fn
µ−a.e−→ f.

Theorem 7. (Egorov) Let (X,A, µ) be a space with finite
measure and f, fn : X → R (n ≥ 1) measurables, finite
µ-a.e such that fn

µ−a.e−→ f. Then fn
a.u−→ f.

Remark 13. If µ is not finite then Theorem is not true.

Example. Let (R,L, µ) be a space with measure and fn :
X → R (n ≥ 1) fn = φAn , where An = [n, n+ 1]. Then
fn

s→ 0 (hence fn
µ−a.e−→ 0), but fn

a.u9 0.

Lemma 1. Let E ⊆ R a Lebesgue measurable set and f :
E → R a Lebesgue measurable function. Then (∀) ε > 0,
(∃)Aε ⊆ E closed such that µ(A \ Aε) < ε and f |Aε

continuous.

Lemma 2. Let E ⊆ R a Lebesgue measurable set with
µ(E) < +∞ and f : E → R a Lebesgue measurable
function finite µ-a.e. Then (∀) ε > 0, (∃)Aε ⊆ E closed
such that µ(E \Aε) < ε and f |Aε continuous.

Theorem 8. (Luzin) Let E ⊆ R a Lebesgue measurable set
and f : E → R a function Lebesgue measurable, finite µ-
a.e. Then (∀) ε > 0, (∃)Aε ⊆ E closed with µ(A\Aε) < ε
and f |Aε continuous.

Corollary 11. Let E ⊆ R a Lebesgue measurable set and
f : E → R a function finite µ-a.e. Then f is Lebesgue
measurable and if and only if f is almost continuous (i.e. ∀
ε > 0, (∃)Aε ⊆ X closed with µ(X \ Aε) < ε and f |Aε

continuous.

Remark 14. To understand this Theorem we observe that
there exists functions f : R → R Lebesgue m., but which
are discontinuous in every point (The Dirichlet function).
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