

ON PARAMETRIC QUASIVARIATIONAL INEQUALITIES

Marcel Bogdan

"Petru Maior" University of Tg. Mureş, Romania e-mail: marcel.bogdan@science.upm.ro

ABSTRACT

A sequence of parametric quasivariational inequalities related to a "limit" quasivariational inequality is considered. We use our technique from [2], to provide a different proof that one given in [1] in order to obtain the stability of solutions, via topological pseudomonotonicity (in the sense of Brézis) of the "limit" operator.

Keywords: quasivariational inequality, topological pseudomonotonicity, hemicontinuity, Mosco convergence, solutions set

1 Introduction

For the motivation and significance of a variational inequality one can consult for example [4, 6, 7].

Let X be a Hilbert space and let us consider, for any $n \in \mathbb{N}$, the following parametric quasivariational inequality:

 $(QVI)_n$ Find an element $a_n \in D_n(a_n)$ such that

$$\langle T_n a_n, b - a_n \rangle \ge 0, \ \forall b \in D_n(a_n),$$

where $D_n(a_n)$ is a nonempty, closed, convex subset of X and $T_n: X \to X$ is a given operator.

Along with $(QVI)_n$ we consider the so-called "limit" quasivariational inequality:

(QVI) Find an element $a \in D(a)$ such that

$$\langle Ta, b - a_n \rangle \ge 0, \ \forall b \in D(a),$$

where $D(a) \subseteq X$ is nonempty closed convex and and $T: X \to X$ is a given operator.

Denote by S(n) the set of the solutions of $(QVI)_n$ for a fixed n and by $S(\infty)$ the set of the solutions for problem (QVI).

Our purpose is to get closer [2] and [1], motivated and inspired by the hypotheses involved in the main results of the two mentioned articles.

2 Main part

In [1] a control space U as a Hilbert space is considered. For any control parameter $u \in U$, a bit more general problem then $(QVI)_u$ was studied. Precisely, for $\varphi \equiv 0$ in [1], the quasivariational inequality is the following:

 $(QVI)_u$ Find an element $y_u \in D(y_u)$ such that

$$\langle Ay_u - Bu, y - y_u \rangle \ge 0, \forall y \in D(y_u).$$

Let us shortly recall their setting. The Hilbert spaces V is such that the embedding $V \subset X$ is continuous, compact and dense. By V^* is denoted the topological dual of V. The operators $A: V \to V^*$ and $B: U \to V^*$ are given. The set-valued map $D: V \to 2^V$ has nonempty, closed, convex values.

Let $u \in U$ and $(u_n)_{n \in \mathbb{N}}$ be weakly convergent to u in U. Along with $(QVI)_u$ consider the following parametric problems:

 $(QVI)_{u_n}$ Find an element $y_{u_n} \in D(y_{u_n})$ such that

$$Ay_{u_n} - Bu_n, y - y_{u_n} \ge 0, \forall y \in D(y_{u_n}).$$

Define the set-valued map $S: u \mapsto S(u)$ the solution map of problems $(QVI)_{u_n}$ and $(QVI)_u$. To overlap in our framework one should regard $S(n) = S(u_n)$ and $S(\infty) = S(u)$.

In [1] it was established the weak sequential closedness of S, i.e. if $(y_n)_{n \in \mathbb{N}}$ is a sequence with $y_n \in S(n)$ such that $y_n \rightharpoonup y$ (weakly) in V then $y \in S(\infty)$.

Let us remind some usual definitions (see [6, 7]). A single operator $A : V \to V^*$ is said to be hemicontinuous if it is weakly continuous on all segments, i.e. $\lim_{\lambda\to 0} \langle A(y + \lambda z), w \rangle = \langle A(y), w \rangle$, for all $y, z, w \in V$. A is said to be strongly monotone if there exists a constant L > 0 such

<

that $\langle A(y) - A(z), y - z \rangle \geq L ||y - z||^2$, for all $y, z \in V$. A is topologically pseudomonotone if for each sequence $(y_n)_{n \in \mathbb{N}} \subset V$ with $y_n \rightharpoonup y$ in V, $\liminf_n \langle A(y_n), y - y_n \rangle \geq 0$ imply $\limsup_n \langle A(y_n), z - y_n \rangle \leq \langle A(y), z - y \rangle$, for all $z \in V$.

In our previous works [2, 3] we use the following condition:

(C) For each sequence $(a_n)_{n \in \mathbb{N}}$, $a_n \in S(n)$ if $a_n \rightharpoonup a, b_n \in X, b \in X$, and $b_n \rightarrow b$, then

 $\liminf_{n \to \infty} \left(\langle Ta_n, b - a_n \rangle - \langle T_n a_n, b_n - a_n \rangle \right) \ge 0.$

Following the classical article [5], the sequence of sets $(D_n)_{n \in \mathbb{N}}$ Mosco converges to D if:

- 1. for every subsequence $(n_k)_{k \in \mathbf{N}}$, $a_{n_k} \in D_{n_k}$ and $a_{n_k} \rightharpoonup a$ imply $a \in D$;
- 2. for every $b \in D$, there exists $(b_n)_{n \in \mathbb{N}}$, such that $b_n \in D_n$ and $b_n \to b$.

To state our result we remind the following (see [2], Theorem 1)

Corollary 1. Let X be a Hilbert space. Let D_n be nonempty sets of X, $n \in \mathbb{N}$. Suppose that $S(n) \neq \emptyset$, for each $n \in \mathbb{N}$, and the following conditions hold:

- i) D_n Mosco converges to D;
- *ii)* T_n and T verify (**C**);
- iii) T is topologically pseudomonotone.

Then, for each sequence $(a_n)_{n \in \mathbb{N}}$ such that $a_n \in S(n), a_n \rightharpoonup a$ implies $a \in S(\infty)$.

Related to Theorem 2 from [1] we are able to formulate the following result:

Theorem 1. Let $u \in U$ and let $(u_n)_{n \in \mathbb{N}}$ be a sequence weakly convergent to u in U. Assume the following:

- (i) D(y) is closed and convex for all $y \in V$;
- (ii) For every $(y_n)_{n \in \mathbb{N}}$ such that y_n weakly converges to y in V, then $D(y_n)$ Mosco converges to D(y);
- (iii) $A: V \to V^*$ is hemicontinuous, strongly monotone and bounded;
- (iv) $B: U \to V^*$ is a compact operator. Then, $u \longmapsto S(u)$ is weakly closed, i.e. for each sequence $(y_n)_{n \in \mathbb{N}}$ of solutions to $(QVI)_{u_n}$, $y_n \rightharpoonup y$ imply $y \in S(u)$.
- *Proof.* Let us check the hypotheses from Corollary 1. Let us define the operators T and T_n , $n \in \mathbb{N}$ by Ty = Ay - Bu and $T_ny = Ay - Bu_n$. In order to check our condition (**C**) we evaluate the difference

$$\begin{split} \langle Ty_n, z - y_n \rangle &- \langle T_n y_n, z - y_n \rangle \\ &= \langle Ay_n, z - y_n \rangle - \langle Ay_n, z_n - y_n \rangle \\ &- [\langle Bu, z - y_n \rangle - \langle Bu_n, z_n - y_n \rangle] \end{split}$$

Let $z_n \to z$ and $y_n \to y$, where \to and \to denote the usual strong and weak convergence, respectively. Since *B* is compact, $(Bu_n)_{n \in \mathbb{N}}$ is strongly convergent to Bu in V^* , therefore the last bracket tends to 0. Since *A* is supposed to be bounded the same happens to the remaining terms.

The operator A is supposed to be hemicontinuous and strongly monotone, therefore is topologically pseudomonotone (see [6, 7]). By the same hypothesis (iii), A is also coercive so $S(n) \neq \emptyset$, for all $n \in \mathbb{N}$. Using the definition, T = A - Bu is also topologically pseudomonotone.

In conclusion, by our Corollary 1, if $(y_n)_{n \in \mathbb{N}}$ is a sequence with $y_n \in S(n)$ such that $y_n \rightharpoonup y$ in V then $y \in S(\infty)$.

A direct comparison between these two results, Assertion 2. in Theorem 2 in [1] and our Corollary 1, make us wonder whether or not the hypothesis for the operator A is redundant. Precisely, (iii) from Theorem 2 in [1] requires that for every $(z_n)_{n\in\mathbb{N}}$ strongly convergent to z in V and $(y_n)_{n\in\mathbb{N}}$ weakly convergent to y in V, $\langle Az, y - z \rangle \leq \liminf_n \langle Az_n, y_n - z_n \rangle$. But this property is not essential in none of the two assertions.

Acknowledgement. The author was financially supported by POSDRU/89/1.5/S/63663.

References

- Adly, S., Bergounioux, M. and Ait Mansour, M. (2010), *Optimal control of a quasi-variational obstacle problem*, J. of Global Optim., vol. 47, pp. 421-435.
- [2] Bogdan, M. and Kolumbán, J. (2009), Some regularities for parametric equilibrium problems, J. of Global Optim., vol. 44, pp. 481-492.
- [3] Bogdan, M. and Kolumbán, J. (2012), On parametric equilibrium problems, Topological Methods in Nonl. Analysis (submitted).
- [4] Kinderlehrer, D. and Stampacchia, G. (1980) An Introduction to Variational Inequalities and Their Applications, Pure and Applied Mathematics, vol. 88, Academic Press, New-York, NY.
- [5] Mosco, U. (1969) *Convergence of convex sets and of solutions of variational inequalities*, Advances in Mathematics, vol. 3, pp. 510-585.
- [6] Showalter, R. E. (1997) Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Math. Society, vol. 49, USA.
- [7] Zeidler, E. (1990) Nonlinear Functional Analysis and its Applications, Vol. III, Springer Verlag, Berlin, Germany.