

28

Scientific Bulletin of the „Petru Maior” University of Tîrgu Mureş

Vol. 10 (XXVII) no. 1, 2013

ISSN-L 1841-9267 (Print), ISSN 2285-438X (Online), ISSN 2286-3184 (CD-

ROM)

AUTOMATIC NUMBER PLATE RECOGNITION SYSTEM

FOR IPHONE DEVICES

Attila ASZALOS
1
, Călin ENĂCHESCU

2

“Petru Maior” University of Tîrgu Mureş

Nicolae Iorga street, no.1, Tîrgu-Mureş, Romania
1ecalin@upm.ro

2aszi.atti@hotmail.com

Abstract

This paper presents a system for automatic number plate recognition, implemented for

devices running the iOS operating system. The methods used for number plate

recognition are based on existing methods, but optimized for devices with low

hardware resources. To solve the task of automatic number plate recognition we have

divided it into the following subtasks: image acquisition, localization of the number

plate position on the image and character detection. The first subtask is performed by

the camera of an iPhone, the second one is done using image pre-processing methods

and template matching. For the character recognition we are using a feed-forward

artificial neural network. Each of these methods is presented along with its results.

Keywords: image processing, number plate recognition, edge detection, optical character

recognition, mobile devices, iOS

1. Introduction

Automatic number plate recognition (ANPR)

systems are used to detect and recognize number

plates on images obtained by cameras. This task

which is trivial for a human is a much more complex

task for a computational system. These systems are

composed of two main parts: hardware and software

part [2]. The hardware part consists of image

acquisition equipment, which is often optimized to

capture clear images even in low light and bad

weather conditions. The captured images are then

processed by the software part of the ANPR system,

which provides the recognized characters on the

number plate.

There are two types of ANPR systems: static and

dynamic. Static ANPR systems recognize the

number plate of still vehicles, while dynamic

systems recognize the number plate for moving

vehicles. Some systems are capable for the

recognition of multiple license plates on a single

image.

Our ANPR system uses as hardware the camera of an

iPhone 4 device, running the iOS 5 operating system.

The software part is implemented for the iOS

platform using the C and Objective-C languages. It is

a static ANPR system, detecting the number plate for

still vehicles and can detect only a single license

plate on an image. This system was implemented as

a static library, because this way it can be easily

integrated into any iPhone application. Our main

goal was to build an ANPR system which can detect

number plates in real-time on an iPhone device,

which has low hardware resources compared to

existing ANPR systems.

The structure of paper is the following: the next

section presents similar systems, compares them with

our system and discusses the similarities and

differences. The third section describes the

architecture of our system and the role of each

component. The fourth section presents the used

image processing and OCR methods, and how these

are combined to solve the problem of automatic

number plate recognition. The fifth section will

present the recognition results, for each component

in part and execution time measurements. The last

two sections contain the conclusions and references.

2. Feature comparison with a similar system

Before we started to build our system we have

conducted a research for similar existing systems

running on iPhone devices. We have found such a

system built by Roman Sládeček for the bachelor’s

thesis entitled “iPhone Application for Number Plate

Recognition”, supervised by eng. Boris Procházka at

Brno University of Technology, Czech Republic in

2011 [14]. In the following we will compare the

29

features of this system with the features of our

system.

The first difference we have found is in the fact that

our system is built as a static library, while

Sládeček’s system is built as an iPhone application.

A static library can be integrated more easily into a

new application than the extracted source code from

an application.

A second feature we would like to compare is the

source type for the ANPR system. Sládeček’s system

requires as input an image file, either from the

phone’s storage or from an image captured with the

camera. Our system can recognize a number plate on

image files, and even more than that it can work on

real-time images obtained from the video camera,

and detect the location of the number plate in real-

time.

A third difference is regarding the location of the

number plate. Sládeček’s system requires that the

number plate is located in the center of the image.

Even a rectangle is drawn on the screen, where the

number plate should be positioned, when the user is

taking a photo with the camera. This is a

disadvantage because the number plate can’t be

always positioned in this predefined area. Our

system doesn’t require a specific location on the

image for the number plate, since it can locate it

automatically.

In case of Sládeček’s system when the plate image is

detected it has to be adjusted by the user so the

characters are positioned at predefined positions. Our

system detects the location of the characters

automatically.

In the following sections we will refer back to

Sládeček’s system, regarding the algorithms and

image processing methods used.

3. System architecture

The system we have built is an iPhone

application, which can be used for automatic number

plate recognition. The architecture of the system can

be seen on Figure 1.

Figure 1 – System architecture

The system is split into 4 main parts:

1. Image processors

2. Protocols

3. Data classes

4. View Controllers

3.1. Image processors

The image processing classes use the open source

OpenCV library to perform various image processing

operations [8]. These classes work with the images

captured by the camera of the phone. The image

processing methods and the sequence of these will be

described in the following section.

This part also contains image converter classes,

which perform type conversions between the image

objects from the iOS Foundation framework and the

OpenCV IplImage object types.

The OCR processors are used to recognize the

characters on the number plate image. Our system

has 2 character recognition engines. The first one is

an engine based on an artificial neural network,

created and trained by us. The second one is the open

source Tesseract OCR engine [15].

3.2. Protocols

The defined protocols define the type of

messages used by the image processors to notify the

interested objects about the results of the processing.

3.3. Data classes

The data class type objects encapsulate the

information about a number plate. This information

mainly consists of the number plate image and the

recognized string on the number plate.

3.4. View controllers

The role of the view controllers is to interact with

the user, present the user interface elements and

recognize the number plate using the previously

presented parts of the system. The user interface

contains a part where the user can see the input from

the phone’s camera. If on an input frame the number

plate is found a rectangle is drawn around it, making

the feeling of an augmented reality application.

The following section describes the image

processing methods used by our system. It also

describes our OCR engine, the structure of it, how it

was trained and how does it work.

4. Description of the methods

The problem of automatic number plate

recognition can be split into the following steps:

image acquisition, determination of the number plate

location and character recognition.

30

Figure 2 – ANPR schema

4.1. Image acquisition

Our system uses the camera of an iPhone and

samples the video output of the camera. The captured

frames have a medium size, which according to the

documentation from Apple is suitable for sharing

over WiFi. The exact size for a frame is 360 x 480

pixels [3]. The captured images are RGB color

images with 3 channels.

4.2. Determination of the number plate

location

The first step in the localization of the number

plate is to determine the orientation of the device. An

assumption is made about the car of which number

plate is about to be recognized. The assumption is

that the car is on its wheels and not upside down.

This way we can rotate the image to the "correct"

orientation where the number plate is positioned

horizontally on the image. This way the following

steps of the algorithm don't have to deal with the

case in which the number plate is positioned

vertically. This rotation is required because if we

hold the device in landscape mode the captured

image will also be in landscape mode [4], with the

number plate oriented vertically.

Figure 3 – Number plate localization

After rotating the image to the "correct"

orientation starts the preprocessing of the captured

image (frame). First the color image is converted to a

grayscale image. This is followed by a Gaussian

filtering operation of the grayscale image. This

filtering improves the result of the next operation, the

Canny filtering [12]. The result of the Canny filtering

is a binary image containing the edges [10]. On this

edge image a contour search is started. For every

found contour there exists a bounding rectangle [11].

Using the coordinates and size of this bounding

rectangle the algorithm makes a template matching.

The used template is an edge image of a number

plate. The template is resized to the size of the

contour's bounding rectangle and is positioned

exactly over it. For the template matching the

following formula [7] is used, with the value in

R(0,0):

The result of the template matching is a number

which reflects the similarity between the template

and the content in the image surrounded by the

bounding rectangle. This resulting value is compared

to a predetermined threshold value. This threshold

value was determined after conducting a series of

experiments. If the result of the template matching is

greater than the threshold value we have found a

match. If there are multiple matches the one with the

highest match value is taken.

At the end of this number plate localization

algorithm the location and size of the number plate is

determined.

4.3. Character recognition

Our character recognition algorithm takes as input

the captured color image and the location and size of

31

the number plate. In the first step the color image is

preprocessed again, in a different way from the

preprocessing from the number plate localization

algorithm. The first step of this preprocessing is an

adaptive filtering, which eliminates the illumination

variations on the image [6].

After the preprocessing the number plate portion of

the image is extracted. This algorithm recognizes the

characters individually. This means they have to be

separated. In order to separate the characters of the

number plate image we have used the technique of

image projections. This way the horizontal and

vertical boundaries of the characters can be found on

the number plate image [1]. The result of the vertical

projection is a discrete function of which there can

be determined the maximum points. The coordinates

of the maximum points give the position of the

boundaries between the characters. The following

pseudo-code algorithm describes this maximum

search [13]:

1. Find the x coordinate for the maximum

value in the projection

2. Determine the width of the peak

a.

b.

3. On the interval we set all

values to

4. If the algorithm stops

5. At coordinate we have a boundary

between two characters

6. The algorithm continues from step 1.

The next step in the algorithm is to determine the

vertical boundaries of the characters. For this the

technique of the horizontal projections can be used.

The following algorithm is used to determine the

vertical boundaries of the individual characters:

1. Detect the vertical centre of the character

image:

2. Determine the top margin of the character:

3. Determine the bottom margin of the

character:

At this point the character images from the

number plate are extracted. To recognize the

individual characters we have used an artificial

neural network. The structure of the network can be

seen on Figure 4 [5].

Figure 4 – Network schema

The input layer has 8 inputs, which correspond to

eight statistical indicators calculated from each

individual character image. The hidden layer has 15

neurons and the output layer has 36 neurons. The

outputs take values from -1 to +1, indicating if the

character isn't or is recognized.

A B … Z 0 … 9

0 1 … 25 26 … 35

Table 1 – Output coding of characters

In the following table we summarize the

statistical indicators used as input values for the

neural network [9].

Name Formula

Center of

gravity

Skewness

Kurtosis

Orientation

Excentricity

Table 2 – Statistical indicators

The network has been trained with 490 samples,

collected with an iPhone running the plate

localization algorithm and separating the character

images. This way the network was trained with

images from the real world. To recognize a character

from the number plate we calculate the statistical

indicators and feed them to the input of the neural

network. From the output we take the index of the

closes value to +1.

32

5. Results

To measure the effectiveness of our system we

have conducted 3 types of tests: efficiency of number

plate localization, efficiency of character separation

and efficiency with character recognition. The results

of these tests are shown on the following charts.

Figure 5 – Number plate detection results

Figure 6 – Character separation results

Figure 7 – Results of character recognition

Figure 8 shows the character recognition success

for the individual characters.

Figure 8 – Individual character recognition

results

We have to state that these are the results for a

relatively small training set and they should increase

along with the size of the training set.

6. Conclusions and future work

As conclusions we can state that our system has

the following advantages over the system built by

Roman Sládeček:

 For the number plate recognition no user

action is required, our system is fully

automatic

 The location of the number plate is detected

and our system doesn’t require to be in a

predefined location

 The character separation is done

automatically

In the future we would like to improve the

accuracy of the character separation and the

character recognition. We are planning to gather

more data so we can increase the size of the training

and testing sets used by the neural network.

7. References

[1] Anil K. Jain, Fundamentals of Digital Image

Processing, Prentice Hall, 1989, ISBN 0-13-

336165-9

[2] ANPR web site [Online] http://www.anpr-

tutorial.com

[3] Apple documentation reference. [Online]

https://developer.apple.com/library/mac/#docu

mentation/AVFoundation/Reference/AVCaptur

eSession_Class/Reference/Reference.html

[4] Apple Technical Q&A QA1744. [Online]

http://developer.apple.com/library/ios/#qa/qa17

44/_index.html#//apple_ref/doc/uid/DTS40011

134

[5] Călin Enachescu, Calcul Neuronal, Editura

Casa Cărţii de Ştiinţă, 2009, ISBN 978-973-13-

460-8

[6] Chris Solomon, Toby Breckon, Fundamentals

of Digital Image Processing: A Practical

Approach with Examples in MATLAB, Wiley,

2011, ISBN 978-0470844731

[7] De-Shuang Huang, Kang-Hyun Jo, Hong-Hee

Lee, Hee-Jun Kang, Vitoantonio Bevilacqua,

Emerging Intelligent Computing Technology

and Applications. With Aspects of Artificial

Intelligence, Springer, 2009, ISBN 978-

3642040191

[8] Gary Bradski, Adrian, Kaehler, Learning

OpenCV: Computer Vision with the OpenCV

Library, O’Reilly, 2008, ISBN 978-

0596516130

[9] Jesse Hansen, A MATLAB Project in Optical

Character Recognition [Online]

http://www.ele.uri.edu/~hansenj/projects/ele58

5/OCR/OCR.pdf

http://www.anpr-tutorial.com/
http://www.anpr-tutorial.com/
https://developer.apple.com/library/mac/#documentation/AVFoundation/Reference/AVCaptureSession_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/AVFoundation/Reference/AVCaptureSession_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/AVFoundation/Reference/AVCaptureSession_Class/Reference/Reference.html
http://developer.apple.com/library/ios/#qa/qa1744/_index.html#//apple_ref/doc/uid/DTS40011134
http://developer.apple.com/library/ios/#qa/qa1744/_index.html#//apple_ref/doc/uid/DTS40011134
http://developer.apple.com/library/ios/#qa/qa1744/_index.html#//apple_ref/doc/uid/DTS40011134
http://www.ele.uri.edu/~hansenj/projects/ele585/OCR/OCR.pdf
http://www.ele.uri.edu/~hansenj/projects/ele585/OCR/OCR.pdf

33

[10] John Canny, A Computational Approach to

Edge Detection, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. PAMI

8, Issue 6, November 1986

[11] J.R. Parker, Algorithms for Image Processing

and Computer Vision, 2nd Edition, Wiley

Publishing, 2010, ISBN 978-0-470-64385-3

[12] Mark S. Nixon, Alberto S. Aguado, Feature

extraction and image processing, Newnes,

2002, ISBN 9780123725387

[13] Ondrej Martinsky, Algorithmic and

Mathematical Principles of Automatic Number

Plate Recognition Systems, Brno University of

Technology, B. Sc. Thesis, 2007

[14] Roman Sládeček, iPhone Application for

Number Plate Recognition, Bachelor’s Theses,

Brno University of Technology, 2011

[15] Tesseract Homepage [Online]:

https://code.google.com/p/tesseract-ocr/

https://code.google.com/p/tesseract-ocr/

