

9

Scientific Bulletin of the „Petru Maior” University of Tîrgu Mureş

Vol. 11 (XXVIII) no. 2, 2014

ISSN-L 1841-9267 (Print), ISSN 2285-438X (Online), ISSN 2286-3184 (CD-ROM)

INDUCTION OF INFLECTION RULES WITH

CLASSIFICATION AND ASSOCIATIVE MEMORY FOR

HUNGARIAN LANGUAGE

Zsolt TÓTH, László KOVÁCS

University of Miskolc

Miskolc, Hungary

tothzs@iit.uni-miskolc.hu

kovacs@iit.uni-miskolc.hu

Abstract

Inflection is a vital element to express semantic in synthetic languages. Proper induction is

crucial for text generation and reporting systems. The induction of inflection rules is an

open question in computational linguistics. The existing solutions use dictionary,

transformation rules or statistical observations to inflect a stem. These methods have

drawbacks either in precision and cost efficiency. This paper present a hybrid method

which is based on classification and associative memory. The words which belong to non-

frequent categories are stored in the associative memory thus the classification process

can be performed faster. The transformations for the regular words are determined by the

classifier. Precision, size and time cost of the algorithm are measured with different sized

associative memory. The tests were performed on a training set of (stem, inflected form)

pairs for the accusative case in Hungarian. The precision of the hybrid algorithm can

exceed the 90 per cent based on the experimental results.

Key words: Natural Language Processing, Inflection, Rule Induction, Classification, Precision

1. Introduction

Natural Language Processing has a growing

popularity for the last two decades. Text based

documents such as emails, report, messages or even

recorded speeches or videos give a significant part of

the stored data. Text mining applications like

information retrieval and document search systems

have evolved in the last twenty years. In spite of the

promising results and good performance of the

existing systems they are often limited to the major

languages. Because the solutions are related to a

given language, they have to be ported to another

natural language which is a costly task. The

conversion requires deep knowledge about the

language and its grammatical structures, moreover it

is usually a time consuming task.

Although most of the researches are focused on

English or other major language [1], there are

solutions for languages with only a few million native

speakers such as Hungarian. The “Szószablya”

project [2] [3] provides a morphological analyzer for

Hungarian. The KOPI is a plagiarism [4] [5] checker

developed by the Hungarian Academy of Sciences.

These projects are focused on the information

extraction.

Text generation is another branch of natural

language processing which aims to generate natural

language texts such as reports or questions. For

Hungarian, László Bednarik created a system to

generate questions for exam from annotated text [6].

Hungarian is an agglutinative language so the

inflection plays an important role in its grammar.

Words are created by adding suffixes to the stem and

the suffix slightly modifies the meaning of the stem.

There are about 17 different cases in Hungarian [7]

which makes the language complex. This paper

focuses on the induction of inflection rules of the

accusative case of the Hungarian.

There are dictionary based, rule based and

statistical methods to learn inflection rules in the

literature. The dictionary based methods have high

precision but they are costly and they cannot deal

with unknown words. The rule based methods have

difficulties with the exceptions and they have a trade-

off within precision and cost. Although it is easy to

create statistical methods but they have low precision.

This paper presents a novel method which uses a

classifier enhanced with associative memory. The

presented method can achieve approximately 90 per

cent precision which is better than the pure

classification based algorithms.

The paper is organized as follows. Section 2

10

presents a brief overview of the related works. The

section presents a brief survey on the different

morphological analyzers, stemmers and inflection

algorithms. The proposed hybrid method is detailed

in Section 3. The experimental results are

summarized in Section 4. The corresponding training

set contains approximately 54.000 (stem, inflected

form) pairs of the accusative case in Hungarian. The

performed measurements were focused on the

precision, time cost and size of the classification

structure. The conclusions are summarized in Section

5.

2. Related Works

Computational Linguistics aims at capturing the

aspects of the natural languages by rule-based and

statistical models. Computational linguistics provide

solution for various tasks such as morphological

analysis, stemming or inflection. The algorithms of

computational linguistics are widely used in Natural

Language Processing solutions. For example

stemmers and morphological analyzers are used in

information retrieval systems. Algorithms on

inflection are used in text generation and machine

translation applications, too.

The first systems were focusing on simpler

morphological problems. For example the inflection

of the past tense of English was analyzed in [8]. It is

assumed that there are different modules in human

mind which are responsible for the inflection. There

is a rule based process to inflect the regular verbs

which allow the inflection of even unknown words.

But its drawback is the over regularization which

transforms irregular verbs into incorrect form. For

example children make grammatical errors when they

say “comed” or “breaked” [9]. The learning of

irregular verbs is similar to an associative memory.

On the other hand there can be similarities found

between irregular verbs which lead to the theory of

rule-associative-memory.

Inflection is the inverse function of stemming

which is well-studied in text mining. Stemming

algorithms are based on various approaches such as

dictionary, rules or statistics. Although dictionary

based methods provides the highest accuracy, they

cannot generalize nor handle unknown words.

Moreover the building of the dictionary is costly,

time-consuming and requires language experts. Rule

based stemming methods has a trade-off between

accuracy and cost. The Porter stemmer is one of the

most popular rule based stemming algorithms [10],

[11]. Statistical methods requires no language

experts, but they can have a low accuracy. An

unsupervised statistical stemming method is

presented in [12] which transforms the induction task

into an optimization task. Although it has promising

results for fusional languages, it was not tested with

agglutinative languages which have more suffixes

and more complex inflection rules.

SMOR is a morphological analyzer [13] for

German inflection rules based on Finite State

Transducers. The rules were implemented in Stuttgart

Finite State Transducer tools and SMOR uses a

lexicon which only stores the properties of the stems.

SMOR has rules for prefix, suffixes, derivation,

composition and inflection. In the experiments the

precision of the SMOR were above 95 per cent in

general and the precision depends on the frequency of

the word.

Finite State Transducers are widely used for

morphological analysis and translation. Stochastic

transducers are also used to learn morphology [14].

The AraComLex [15] is a morphological analyzer for

Modern Standard Arabic. Finite State Transducers are

used to perform the analysis. Finite State Transducers

are used also in machine translation systems [16].

Bayesian approach was used to perform

morphological analysis in [17]. It assumes that the

spelling rules occur at the end of the word. The

𝑃(𝑐, 𝑡, 𝑓, 𝑦, 𝑟|𝑤) model is used to define the stem for

the word where 𝑤 is the word, 𝑐 is the class of the

word, 𝑡 is the stem, 𝑓 is the suffix, 𝑦 is the type of the

spelling rule and 𝑟 is the transformation. During the

inference a standard Markov Chain Monte Carlo

technique was used. Their experiments showed that

the accuracy of the stem and suffix recognition

depends on the context. The accuracy of stem

recognition is about 65 per cent and the accuracy of

suffix recognition is about 78 per cent. Although this

method is no as precise as the above mentioned rule

based algorithms, it does not require human experts

and a priori knowledge about the grammatical rules

of the language.

The endings of the words are considered as

classes in [18] because the language learners often

learn induction tables where a cell denotes an

inflection class. Based on their endings the words are

organized into candidate inflection classes. These

classes can be organized into a lattice. The authors

tested five different reduction algorithms from the

point of view of precision and recall. The tests were

evaluated with both English and Spanish languages.

3. Hybrid Method

The algorithms of Computational Linguistics

usually have a common model which can be seen in

Fig. 1. Morphological analyzers, stemmers and

inflection systems usually have two core parts. There

is an engine to perform the transformation on the

input word and to produce the output word. The

engine has no direct knowledge about the language.

The morphological rules are stored in a separate rule

set. The structure of the rule set depends on the

inflection algorithm. For example Snowball [11] is a

language to describe stemming rules for Porter

stemmer [10]. Rules of the SMOR [13]

morphological analyzer are given by the Stuttgart

Finite State Tools and the engine is realized as Finite

State Transducer. Classification based inflection

algorithms can use the category to encode the

transformation.

11

Fig. 1 Common Model of

Inflection Algorithms

The proposed method is based on classification

system. The input data structure of a classification

system consists of a set of objects 𝑂, a set of class

labels 𝐶, and a set of attributes 𝐴. The attributes of

the objects are defined by the function 𝑎: 𝑂 → 𝑃(𝐴)

where 𝑃(𝐴) is the power set of the attributes. The

usually unknown function 𝑐: 𝑂 → 𝐶 maps the objects

to class labels. Equation 1 shows the formal definition

of the training set.

𝑇 ⊆ { 𝑎 𝑜 , 𝑐 𝑜 |𝑜 ∈ 𝑂} (1)

The approximation of 𝑐, classification function

𝑐𝑙𝑇: 𝑂 → 𝐶 depends on the data in the training set.

The classification function is defined in Equation 2

where 𝑃𝑟 stands for the probability.

𝑐𝑙𝑇(𝑜) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐶{𝑃𝑟(𝐶|𝑎 𝑜 , 𝑇)} (2)

The model of the presented inflection algorithm is

shown in Fig 2. The implemented rule set consists of

two parts: an associative memory and a classifier. The

associative memory is used to store the

transformation string of the irregular words and the

classifier is used for the regular ones.

Fig. 2 Model of the presented

Inflection Algorithm

The classification of the stems is a difficult

problem due to the high number of the linear non

separable cluster pairs [19]. The test method on linear

separability is based on Simplex method [20]. The

number of linear non separable cluster pairs can be

reduced, if the irregular words are stored in an

associative memory. Thus the classification problem

can be simpler and higher precision can be achieved.

Table 1 shows how the number of the non-

separable cluster pairs and the number of the clusters

decreas if the small clusters are removed. The first

column shows the minimum size of the clusters

which remain in the training set. The second column

shows the number of the non-separable cluster pairs.

The third column shows the number of the clusters in

the reduced training set. The high number of different

class labels can increase the difficulty of the

classification. Without the elimination of the small

clusters there are 158 clusters and 96 non-separable

cluster pairs in the training set. If the clusters which

contains less than 100 objects are removed, then the

number of the non-separable cluster pairs decreases

approximately to its quart and the number of the

clusters decreases about its tenth. After the reduction

of small clusters, the elements of these clusters are

stored in a separate list.

Table 1: Results of the reduction.

Min. Cluster

Size

Number of non-

separable cluster

pairs

Number of

Clusters

0 96 158

5 84 46

10 76 35

25 42 23

50 34 19

100 23 13

The classifier is used to learn the frequent

inflection rules. The algorithm of this function

depends on the chosen classification method.

Classifiers can perform generalization. The

generalization may easily fail on exceptions. Thus

classifier systems usually have lower precision than

associative memory. Moreover, classifiers have more

difficult learning algorithm which requires a

significant additional learning time cost. In some

cases, the classification process also can have a

significant time cost. The instance based classifiers,

such as k-NN classifier [21], determines the 𝑘 most

similar object to the classified instance from an

instance database. The distance calculation and the

search can be costly thus the inflection algorithm can

be slow.

The rule set determines the behavior of the

inflection algorithm so the precision of the algorithm

depends on the rule set. During the learning process

the rules set is defined as pairs of stem and inflected

form. Transformation string can be determined for

12

each word pairs with the Levenshtein distance

algorithm [22]. The transformation strings are

considered as categories of stems. Thus the inflection

rule induction task is converted into a classification

task where the stems are the investigated objects and

the transformation strings are the categories.

The classification algorithms in the literature are

based on various approaches such as Bayes theorem

[23], decision trees [24], artificial neural networks

[25] or support vector machines [26]. Our previous

experiments [19] showed that approximately 70 per

cent precision can be achieved with standard

classification methods in the induction of inflection

rules of the accusative case in Hungarian.

The representation form of the words affects the

efficiency of the classification process, too. The

words are usually converted into real vectors by

mapping the letters into real values. This mapping can

be based on code tables such as ASCII or traditional

alphabet. These mappings have numerous drawbacks.

For example the distance of the letters is constant and

the phonetic features of the letters are not considered.

A phonetic features based alphabet was presented in

[27] for Hungarian. The phonetic alphabet based

encoding was shown superior to the traditional

alphabet and the ASCII code table based encodings.

The presented inflection algorithm uses both

classifier and an associative memory to learn

inflection rules. Regular words are classified by the

classifier and the irregular words are stored in the

associative memory. The size of the associative

memory is a parameter of the method. The algorithm

looks for the word in the associative memory. If the

word is not found, then the transformation string is

determined by the classifier.

The learning phase has two main steps. In the first

step the categories are ordered by their size. Then the

associative memory is populated with the irregular

words. If a word is put into the associative memory,

then it is also removed from the training set. The

population of the associative memory is based on a

greedy approach i.e. if the size of the associative

memory is bigger than the training set, then the

training set is put into the associative memory. Then

in the second step, the classifier is built based on the

rest of the training set. The efficiency, the training

cost and the precision depends on the chosen

classification method.

The presented method is evaluated from the point

of the view of precision, size and time cost. The

precision is the ratio of the correctly inflected words

and the total number of the words. The size of the

rule set is measured with the length of the serialized

object. Finally the time cost is measured as the

required time for learning in milliseconds. The

method was evaluated with alphabetical and phonetic

alphabet based letter encodings and Naïve Bayes and

Multi-Layer Perceptron classifiers and different sizes

for the associative memory.

4. Experimental Results

The experimental measurements were

implemented on a training set of 54,000 pairs (stem,

inflected word) of the accusative case of Hungarian.

The inflection algorithm was implemented as a

module of the META framework in Java.

Alphabetical and phonetic encodings were used in the

tests. The Weka data mining and machine learning

framework was used for classification. Naïve Bayes

and Multilayer Perceptron classifiers were used to

learn the inflection rules. In the learning phase, the

75, 90 and 100 percent of the training set was used to

train the algorithm. But the entire training set was

used during the testing. Thus the behavior of the

algorithm with untrained input can be examined. The

measurements were done with both fixed and relative

associative memory sizes. The fix measurements

were done with small associative memory sizes

because it was assumed that there are only a few

irregular words. The relative sizes were set to every

10 per cent of the size of the training set.

Precision

The precision is one of the most important

parameters of the classifiers. It shows the ration of the

correctly classified sample and the validation set. In

the measurements there were 54.000 samples in the

training set and this set was the validation set. The

training set contains the stem of almost every

Hungarian nouns. The training set was reduced in

order to observe the behavior of the algorithm with

untrained words.

Fig. 3 and Fig 4 show how the precision changes

in the function of the size of the associative memory

with alphabetical and phonetic alphabet based

encodings with Naïve Bayes classifier. The x axis

shows the size of the associative memory and the y

axis shows the precision. If the size of the associative

memory is zero then the algorithm uses only the

classifier to determine the transformation strings. In

this case the precision of the algorithm is equivalent

with the precision of the classifier. The precision of

the algorithm increases with the size of the

associative memory. The precision reaches the top

around 20.000 which is approximately the 40 per cent

of the whole training set. The precision has a break

down when the entire training set fits into the

associative memory. It can be explained with that in

this case the algorithm do not use the classifier so that

it cannot generalize. In these case the precision is the

ratio of the training set and the validating set.

13

Fig. 3 Precision with Naive Bayes Classifier and

Alphabetical Encoding

The precision increases more quickly with the

reduced training sets in the cases of both encodings.

Although the precision is peak at the same level with

both alphabetical and phonetic encodings, the

precision increases more quickly with phonetic

encoding. These phenomena can be explained with

the learning algorithm of the classifier. Because the

irregular cases are placed in the associative memory,

the number of the categories is reduced. If a category,

which is not linear separable from other clusters, is

put into the associative memory, then the number of

the linear non separable cluster pairs decreases.

Hence the usage of the associative memory can

reduce the number of the linear non separable cluster

pairs. This reduction could yield the incensement of

the precision of the inflection algorithm.

Fig. 4 Precision with Naive Bayes Classifier and Phonetic

Encoding

Multilayer Perceptron shows better precision than

Naïve Bayes classifier even without associative

memory. In this case the precision increases steadily

and tops around 20.000 similar to the Naïve Bayes

classifier. Fig. 5 shows how the precision depends on

the size of the associative memory in the case of the

Multilayer Perceptron with alphabetical encoding.

Fig. 6 shows how the precision changes with the size

of the associative memory in the case of phonetic

encoding. In this case, regarding the Multilayer

Perceptron classifier there is no significant difference

between the two encoding unlike with the Naïve

Bayes classifier.

Fig. 5 Precision with Multilayer Perceptron Classifier and

Alphabetical Encoding

Fig. 6 Precision with Multilayer Perceptron Classifier and

Phonetic Encoding

Size

The size of the algorithm is a vital property of the

algorithm from the point of view of performance.

Algorithms which use a lot of memory are often slow

due to the frequent memory swaps. An algorithm with

small memory cost could require less memory swap

or even could fit into the memory which makes it

faster.

The size of the learning algorithm was measured

as the size of the serialized object in bytes. The

serialization was possible with the Java API because

the Classifier class of Weka implements the

Serializable interface. Because the Naïve Bayes and

the Multilayer Perceptron classifiers had similar

behavior with both encodings, Fig. 7 shows how the

size of the algorithm depends on the size of the

associative memory. The measurements showed that

the size of the classifier has no significant effect on

the size of the inflecting algorithm. The x axis shows

the size of the associative memory and the y axis

shows the size of the serialized object of the

algorithm in bytes.

14

Fig. 7 Size of the inflection algorithm

The size of the algorithm decreases quickly until

approximately 1000 then it starts to increase steadily.

The size increases linearly because the size of the

associative memory also increases linearly. So linear

connection between the size of the algorithm and the

size of the associative memory can be assumed. Fig. 8

shows how the size of the algorithm changes between

0 and 3000. It shows that the size drops until about

200 then it has a minimum between 500 and 1000.

Finally it starts to increase. The simplification of the

classification method can be the reason of this fall.

Because the least frequent category is put into the

associative memory first, many of the categories can

be eliminated from the training set even with a small

associative memory. This elimination yields a

simplified classifier which requires less memory.

Fig. 8 Size of the inflection algorithm

Time Cost

The time cost of the algorithm is the time which is

require for training. Although this cost occurs only in

the learning phase it makes the tuning of the

algorithm slower. Moreover the learning cost can

limit the applicability of the algorithm if it is too high.

For example if the time cost would grow exponential

with the number of samples then it could be applied

with only small training sets.

The measurements showed that the learning cost

of the algorithm significanty depends on the

classifier. Fig. 9 shows how the learning cost

decreases with the increase the size of the associative

memory. It also shows a short transient phase up to

3.000. Then it decreases steadyly and there is a fall

around 20.000.

Fig. 9 Time Cost with Naive Bayes Classifier

Fig. 10 shows the time cost in the case of the

Multilayer Perceptron classifier. Although the

training cost of the neural network is much more

higher than the Bayesian classifier the time cost

function is similar. The time cost can be reduced with

the application of a small associatvie memory. Then it

decreases slowly and it also has a break down around

20.000.

Fig. 10 Time Cost with Multilayer Perceptron Classifier

The measurements showed that the precision of

the classification based inflection algorithms can be

increased with the usage of associative memory. But

above a certain size of associative memory the

precision will not increase. Moreover if the

associative memory is too big then the precision of

the algorithm can decrease.

Measurements showed that the size of the

algorithm depends on the size of the associative

memory. Above a certain size of associative memory

there is a linear connection between the algorithm and

the associative memory. The learning cost depends on

the classification method. However the different

15

classification methods had different learning cost the

time cost decreased similar with both classifiers

5. Conclusion

This paper presented a classification method

enhanced with associative memory for inflection

algorithm. The method uses associative memory to

learn the irregular words and the exceptions. The

classifier is used to capture the regular transformation

rules. The algorithm looks for the rules first in the

associative memory. If it does not find the rule, then

the classifier is used to determine the transformation

rule. These two phases allows to achieve high

precision and compact size.

The experimental measurements were focused on

the precision, the size of the algorithm and the

learning cost. Results showed that precision increases

fast with the size of the associative memory. The

maximum precision was achieved with an

approximately 20.000 sized associative memory for a

training set of 54.000 samples. Phonetic alphabet

based encoding showed better results with Naïve

Bayes classifier and the encoding had no significant

effect on the Multilayer Perceptron classifier.

Measurements on the size of the algorithm showed

that the size grows linearly with the size of the

associative memory and the classifier do not modify

the size significantly. Experimental results show that

the learning cost of the algorithm depends on

classifier. The learning cost decreased similarly with

both tested classifiers although the order of the cost

function was different.

The presented inflection algorithm is capable to

handle irregular words and to determine the

transformation string for the regular ones with high

precision. The algorithm could achieve approximately

90 per cent precision with incomplete training sets

which is superior to the pure classification based

methods. The size of the associative memory is a vital

parameter of the method. The proper chose of this

parameter requires tuning or examination of the

training set.

References

[1] Maria Chiara Caschera, Arianna D’Ulizia,

Fernando Ferri, Patrizia Grifoni (2014) An

Italian Multimodal Corpus: The Building

Process, in On the move to Meaningful Internet

Systems: OTM 2014 Workshop, pp.: 557-566

[2] Richárd Farkas, György Szarvas (2004),

Statisztikai alapú tulajdonnév-felismerő magyar

nyelvre, [Statistical Named Entity Recognition

for Hungarian], in II. Magyar Számítógépes

Nyelvészeti Konferencia [2
nd

 Conference on

Hungarian Computational Linguistics], pp. 136-

140

[3] Péter Halácsy, András Kornai, László Németh,

András Rung, István Szakadát, Viktor Trón

(2004), Createdin Open Language Resources of

Hungarian, in LREC

[4] Máté Pataki (2006) Plagiarism search within

one document, in Proceedings of the

Automation and Applied Computer Science

Workshop, pp. 187-194.

[5] Máté Pataki (2006), Distributed similarity and

plagiarism search, in Proceedings of the

Automation and Applied Computer Science

Workshop, pp. 121-130.

[6] László Bednarik (2012), Automatizált

kérdésgenerálás annotált szövegből [Automatic

Question Generation from Annotated Text],

PhD Thesis

[7] Edith Moravcsik (2003), Inflectional

morphology in the Hungarian noun phrase, in

Noun phrase structure in the languages of

Europe, vol. 20.

[8] Steven Pinker (1991), Rules of Languages

Science vol. 253, no. 5019, pp. 530-535.

[9] Gary F. Marcus (1996) Why do children say

“breaked”?, Current Directions of

Psychological Science, vol. 5, pp. 81-85.

[10] Martin F. Porter (1980), An algorithm for suffix

stripping, Program: electronic library and

information system, vol. 14 no. 3 pp. 130-137.

[11] Martin F. Porter (2001), Snowball: A language

for stemming algorithms [Online]. Available:

http://snowball.tartarus.org/texts/introduction.ht

ml

[12] Alexander Gelbukh, Mikhail Alexandrov, Sang

Yong Han (2004), Detecting inflection patterns

in natural language by minimization of

morphological model, Progress in Pattern

Recognition , Image Analysis and Applications,

Springer pp. 432-438.

[13] Helmut Schmid, Arne Fitschen, Ulrich Heid

(2004), SMOR: A German Computational

Morphology Covering Derivation, Composition

and Inflection, Proc. LREC, pp. 1263-1266.

[14] Alexander Clark (2002), Memory-based

learning of morphology with stochastic

transducers, Proceedings of 40
th

 Annual Meeting

of Association of Computational Linguistics, pp.

513-520.

[15] Mohammed Attia, Pavel Pecina, Antonio Toral,

Lamia Tousi, Josef van Genabith (2011) in

Proceedings of the 9
th

 International Workshop

on Finite State Methods and Natural Language

Processing, pp. 125-133.

[16] Johnathan North Washington, Mirlan Ipasov,

Francis M. Tyres (2012) A finite-state

morphological transducer for Kyrgyz in

Proceedings of the 8
th

 international conference

on Language Resources and Evaluation

(LREC’12), pp. 934-940

[17] Jason Naradowsky, Sharon Goldwater (2009),

Improving Morphology Induction by Learning

Spelling Rules, IJCAI, pp. 1531-1536.

http://snowball.tartarus.org/texts/introduction.html
http://snowball.tartarus.org/texts/introduction.html

16

[18] Christian Monson, Alon Lavie, Jamie Carbonell,

Lori Levin (2004), Unsupervised Induction of

Natural Language Morphology Inflection

Classes, Proceeding of 7
th

 Meeting of the ACL

Special Interest Group in Computational

Phonology, pp. 52-61.

[19] Zsolt Tóth, László Kovács (2014), Testing

linear separability in classification of inflection

rules, Proceedings of 12
th

 International

Symposium on Intelligent Systems and

Informatics (SISY), pp. 27-32.

[20] David Elizondo (2006) The linear separability

problem: Some testing methods, in IEEE

Transactions on Neural Networks vol. 17. No. 2.

pp. 330-344.

[21] Pádraig Cunningham, Sarah Jane Delany

(2007), k-Nearest Neighbour Classifiers, in

Multiple Classifier System pp. 1-17.

[22] Gonzalo, Navaro (2001), A guided tour to

approximate string matching, ACM computing

surveys (CSUR), vol. 33, no. 1, pp. 31-88.

[23] George H. John, Pat Langley (1995) Estimating

Continuous Distributions in Bayesian

Classifiers, in Proceedings of 11
th

 Conference

on Uncertainty and Artificial Intelligence, pp.

338-345.

[24] A. Sirvastava, E. Han, V. Kumar, V. Singh

(2002), Parallel Formulations of Decision-tree

Classification Algorithms

[25] Anil K. Jain, Jianchang Mao, K. Modin

Mohiuddin (1996) Artificial Neural Networks:

A tutorial in Computer vol. 29 no. 3 pp. 10-18.

[26] Johan Suykens, Tony Van Gestel, Jos de

Brabanter, Bart de Moor, Joos Vandewalle

(2002) Least Square Support Vector Machines

[27] Zsolt Tóth, László Kovács (2013), Fonetikai

tulajdonságok alapú ábécé készítése [Phonetic

features based alphabet], Multidiszciplinári

tudományok, vol. 3, no. 1. pp. 317-326.

