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ABSTRACT
This paper investigates the existence of positive solutions for a sixth-order m-point
boundary value problem with three variable parameters. Many problems in the the-
ory of elastic stability can be handled by the method of multi-point problems. By using
the fixed point theorem and operator spectral theorem, we give a new existence result.

Keywords: positive solutions, variable parameters, fixed point theorem, operator
spectral theorem

1 Introduction

Boundary-value problems for ordinary differential
equations arise in different areas of applied mathemat-
ics and physics and the existence and multiplicity of
positive solutions for such problems has become an
important area of investigation in recent years; we re-
fer the reader to [1-15] and the references therein. For
example, the deformations of an elastic beam in the
equilibrium state can be described as a boundary value
problem of some fourth-order differential equations.

Multipoint boundary value problems for ordinary
differential equations arise in a variety of areas of ap-
plied mathematics and physics. For examples, the
vibrations of a guy wire of a uniform cross-section
and composed of N parts of different densities can be
set up as a multi-point boundary value problem; also
many problems in the theory of elastic stability can
be handled by the method of multi-point problems. In
2006 Ma [3] studied the existence of positive solutions
for the following m-point BVP of fourth order

u(4)(t) + βu(2)(t)− αu(t) = f(t, u(t)), 0 < t < 1

u(0) =
m−2∑
i=1

aiu(ξi), u(1) =
m−2∑
i=1

biu(ξi)

u(2)(0) =
m−2∑
i=1

aiu
(2)(ξi), u(2)(1) =

m−2∑
i=1

biu
(2)(ξi)

where α, β ∈ R, ξi ∈ (0, 1) , ai, bi ∈ [0,∞) for
i ∈ {1, 2, ...,m − 2} are given constants satisfying
some suitable conditions.

Recently, Zhang and Wei [4] established the exis-
tence result of positive solution for the fourth-order
boundary value problem with variable parameters as
follows:

u(4) +B(t)u
(2)

−A(t)u(t) = f(t, u(t)), 0 < t < 1

u(0) =
m−2∑
i=1

aiu(ξi), u(1) =
m−2∑
i=1

biu(ξi)

u(2)(0) =
m−2∑
i=1

aiu
(2)(ξi), u(2)(1) =

m−2∑
i=1

biu
(2)(ξi)

It is well known that the deformation of the equilib-
rium state, an elastic circular ring segment with its two
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ends simply supported can be described by a boundary
value problem for a sixth-order ordinary differential
equation:

u(6) + 2u(4) + u(2) = f(t, u), 0 < t < 1

u(0) = u(1) = u(2)(0) = u(2)(1)

= u(4)(0) = u(4)(1) = 0,

However, there are only a handful of articles on this
topic. See, for example [5-7].

In this paper we shall discuss the existence of posi-
tive solutions for the sixth-order boundary value prob-
lem

−u(6) +A(t)u(4) +B(t)u(2) +C(t)u = f(t, u, u
(2)

)
(1)

u(2i−2)(0) =

m−2∑
i=1

aiu
(2i−2)(ξi), i = 1, 2, 3.

u(2i−2)(1) =

m−2∑
i=1

biu
(2i−2)(ξi), i = 1, 2, 3.

(2)

where A(t), B(t), C(t) ∈ C[0, 1]. Our results will
generalize those established in [3, 4].

For this, we shall assume the following conditions
throughout:

(H1) f : [0, 1] × [0,∞) × (−∞, 0] −→ [0,∞) is
continuous.

(H2) a = supt∈[0,1]A(t) > −π2, a, b, c ∈ R,
b = inft∈[0,1]B(t) > 0,
c = supt∈[0,1] C(t) < 0,

π6 + aπ4 − bπ2 + c > 0.

Assumption (H2) involves a three-parameter non-
resonance condition.

We will apply the cone fixed point theory, combin-
ing with the operator spectra theorem to establish the
existence of positive solutions of boundary value prob-
lem (1-2). The paper is organized as follows. In Sec-
tion 2, we give some preliminary lemmas. In Section
3, we obtain an existence result for the boundary value
problem (1-2).

2 Preliminaries

Let Y = C[0, 1], Y+ = {u ∈ Y : u(t) ≥ 0,
t ∈ [0, 1]}. It is well known that Y is a Banach space
equipped with the norm ∥u∥0 = supt∈[0,1] |u(t)|.

Set

X =

{
u ∈ C4[0, 1] : u(2i−2)(0) =

=
m−2∑
i=1

aiu
(2i−2)(ξi), u

(2i−2)(1) =

=
m−2∑
i=1

biu
(2i−2)(ξi), i = 1, 2.

}

For given χ ≥ 0 and ν ≥ 0, we denote the
norm ∥u∥χ,ν by ∥u∥χ,ν = supt∈[0,1]{|u(4)(t)| +
χ|u(2)(t)|+ ν|u(t)|}, u ∈ X. We also need
the space X equipped with the norm ∥·∥2 =
max

{
∥u∥0 ,

∥∥u(2)∥∥
0
,
∥∥u(4)∥∥

0

}
. In this Section, we

will show that X is complete with both the norms
∥·∥χ,ν and ∥·∥2 .

Let

E = {C2 [0, 1] : u(0) =

m−2∑
i=1

aiu(ξi), u(1)

=

m−2∑
i=1

biu(ξi), u
(2)(0)

=
m−2∑
i=1

aiu
(2)(ξi), u

(2)(1)

=
m−2∑
i=1

biu
(2)(ξi)}.

Then E is a Banach space with a norm by

∥u∥ = max
t∈[0,1]

|u(2)(t)|, ∀u ∈ E.

For h ∈ Y, consider the following linear boundary
value problem:

−u(6) + au(4) + bu(2) + cu = h(t), 0 < t < 1 (3)

u(0) = u(1) = u(2)(0) = u(2)(1) = u(4)(0)

= u(4)(1) = 0,
(4)

where a, b, c satisfy the assumption

π6 + aπ4 − bπ2 + c > 0 (5)

and let Γ = π6 + aπ4 − bπ2 + c. The inequality (5)
follows immediately from the fact that Γ = π6+aπ4−
bπ2 + c is the first eigenvalue of the problem −u(6) +
au(4) + bu(2) + cu = λu, u(0) = u(1) = u(2)(0) =
u(2)(1) = u(4)(0) = u(4)(1) = 0 and φ1(t) = sinπt
is the first eigenfunction, i.e. Γ > 0.

Let P (λ) = λ2 + βλ− α where β < 2π2, α ≥ 0.
It is easy to see that equation P (λ) = 0 has two real

roots λ1, λ2 =
−β±

√
β2+4α

2 , with λ1 ≥ 0 ≥ λ2 >
−π2. Let λ3 be a number such that 0 ≤ λ3 < −λ2.
In this case, (3) satisfies the following decomposition
form:

− u(6) + au(4) + bu(2) + cu =

(
− d2

dt2
+ λ1

)
(
− d2

dt2
+ λ2

)(
− d2

dt2
+ λ3

)
u, 0 < t < 1.

(6)

It is obvious that a = λ1 + λ2 + λ3 > −π2, b =
−λ1λ2 − λ2λ3 − λ1λ3 > 0, c = λ1λ2λ3 < 0.

Lemma 1. [3]. Assume that (H2) holds. Then there
exists unique φi, ψi, i = 1, 2, 3 satisfying
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{
−φ(2)

i + λiφi = 0,
φi(0) = 0, φi(1) = 1;

}
{

−ψ(2)
i + λiψi = 0,

ψi(0) = 1, ψi(1) = 0;

}
respectively. More-

over, φi and ψi are positive on [0, 1] .
For i = 1, 2, 3 set ρi = φ

′

i(0),

Gi(t, s) =
1

ρi

{
φi(t)ψi(s), 0 ≤ t ≤ s ≤ 1,
φi(s)ψi(t), 0 ≤ s ≤ t ≤ 1.

}
(7)

Then Gi(t, s), (i = 1, 2, 3) are the Green’s func-
tion of the linear boundary value problem

−u(2) + λiu = 0, u(0) = u(1) = 0.

We have the following several lemmas, which will
be used in the sequence:

Lemma 2. [3]. Let ωi =
√
|λi|, then Gi(t, s)(i =

1, 2, 3) can be expressed by
(i) when λi > 0,

Gi(t, s) =

{
sinhωit sinhωi(1−s)

ωi sinhωi
, 0 ≤ t ≤ s ≤ 1

sinhωis sinhωi(1−t)
ωi sinhωi

, 0 ≤ s ≤ t ≤ 1

}
(ii) when λi = 0,

Gi(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1
s(1− t), 0 ≤ s ≤ t ≤ 1

}
(iii) when −π2 < λi < 0,

Gi(t, s) =

{
sinωit sinωi(1−s)

ωi sinωi
, 0 ≤ t ≤ s ≤ 1

sinωis sinωi(1−t)
ωi sinωi

, 0 ≤ s ≤ t ≤ 1

}
.

Lemma 3. Gi(t, s), φi, ψi (i = 1, 2) have the follow-
ing properties:

(i) Gi(t, s) > 0,∀t, s ∈ (0, 1) ;
(ii) Gi(t, s) ≤ CiGi(s, s),∀ t, s ∈ [0, 1] ;
(iii) Gi(t, s) ≥ δiGi(t, t)Gi(s, s),∀ t, s ∈ [0, 1] ;
(iv) δiGi(t, t) ≤ φi, (t), ψi(t) ≤ Ci, ∀ t ∈ [0, 1]

where Ci = 1, δi = ωi

sinhωi
, if λi > 0;Ci = 1, δi =

1, if λi = 0;Ci = 1
sinωi

, δi = ωi sinωi, if −π2 <
λi < 0.

Denote

G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1
s(1− t), 0 ≤ s ≤ t ≤ 1

}
,

∆ =

∣∣∣∣∣∣∣∣∣∣

m−2∑
i=1

aiξi

m−2∑
i=1

ai(1− ξi)− 1

m−2∑
i=1

biξi − 1
m−2∑
i=1

bi(1− ξi)

∣∣∣∣∣∣∣∣∣∣
.

Applying the similar method to the Lemma 2.2 in
[3], we can obtain the following lemma:

Lemma 4. [3]. Suppose that (H2) holds. Assume that
(H3) ∆ < 0,
then for any g ∈ C [0, 1] , the problem

−u(2) = g(t), 0 < t < 1

u(0) =
m−2∑
i=1

aiu(ξi), u(1) =
m−2∑
i=1

biu(ξi)

has a unique solution

u(t) =

∫ 1

0

G(t, s)g(s)ds+A0(g)t

+B0(g)(1− t)

(8)

where

A0(g)

= − 1

∆

∣∣∣∣∣∣∣∣∣∣

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)g(s)ds

m−2∑
i=1

ai(1− ξi)− 1

m−2∑
i=1

bi

∫ 1

0

G(ξi, s)g(s)ds
m−2∑
i=1

bi(1− ξi)

∣∣∣∣∣∣∣∣∣∣
B0(g)

= − 1

∆

∣∣∣∣∣∣∣∣∣∣

m−2∑
i=1

aiξi

m−2∑
i=1

ai

∫ 1

0

G(ξi, s)g(s)d

m−2∑
i=1

biξi − 1
m−2∑
i=1

bi

∫ 1

0

G(ξi, s)g(s)ds

∣∣∣∣∣∣∣∣∣∣
.

We can rewrite (8) the following form:

u(t) =

∫ 1

0

G(t, s)(−u(2))ds+A0(−u(2))t

+B0(−u(2))(1− t)

(9)

and it is easy to see that:

u(2)(t) =

∫ 1

0

G(t, s)(−u(4))ds+A0(−u(4))t

+B0(−u(4))(1− t),

(10)

where u ∈ X.

Lemma 5. One has that for all u ∈ E, ∥u∥0 ≤
σ
∥∥u(2)∥∥

0
. Moreover, ∀u ∈ X, ∥u∥0 ≤ σ

∥∥u(2)∥∥
0
≤

σ2
∥∥u(4)∥∥

0
, where σ = 1 + |A0(1)|+ |B0(1)| .

Proof. Using (9) and Lemma 3, we have

|u(t)| ≤
∫ 1

0

G(s, s)ds|u(2)(s)|

+ |A0(1)||u(2)(s)|+ |B0(1)||u(2)(s)|
≤ (1 + |A0(1)|+ |B0(1)|) t∥u(2)t∥0
≤ σ∥u(2)∥0, t ∈ [0, 1]

and it follows that ∥u∥0 ≤ σ
∥∥u(2)∥∥

0
. Similarly, one

can show that
∥∥u(2)∥∥

0
≤ σ

∥∥u(4)∥∥
0
.

Lemma 6. Let (H2) and (H3) hold, then X is com-
plete with respect to the norm ∥·∥χ,ν , where the con-
stants χ ≥ 0, ν ≥ 0, and

(1 + χ+ ν)
−1 ∥·∥χ,ν ≤ ∥·∥2 ≤ σ2 ∥·∥χ,ν , (11)

which means that the norms ∥·∥2 and ∥·∥χ,ν are equiv-
alent.
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Proof. It is easy to see that ∥u∥χ,ν and ∥u∥2 are both
norms on X by Lemma 5, so we only need to show
their completeness.

First we show that the norm ∥·∥χ,ν is equivalent to
the norm ∥u∥2 . In fact, ∀u ∈ X, t ∈ [0, 1] ,∣∣∣u(4)(t)∣∣∣+ χ

∣∣∣u(2)(t)∣∣∣+ ν |u(t)|

≤
∥∥∥u(4)∥∥∥

0
+ χ

∥∥∥u(2)(t)∥∥∥
0
+ ν ∥u(t)∥0

≤ (1 + χ+ ν) ∥u∥2 .

Thus ∥u∥χ,ν ≤ (1 + χ+ ν) ∥u∥2 .
Also ∀u ∈ X, t ∈ [0, 1] ,

∣∣u(4)(t)∣∣ ≤∣∣u(4)(t)∣∣ + χ
∣∣u(2)(t)∣∣ + ν |u(t)| ≤ ∥u∥χ,ν and so∥∥u(4)∥∥

0
≤ ∥u∥χ,ν ≤ σ2 ∥u∥χ,ν . By Lemma 5, we

have
∥∥u(2)∥∥

0
≤ σ

∥∥u(4)∥∥
0
≤ σ ∥u∥χ,ν and ∥u∥0 ≤

σ
∥∥u(2)∥∥

0
≤ σ2

∥∥u(4)∥∥
0
≤ σ2 ∥u∥χ,ν . Hence ∥u∥2 ≤

σ2 ∥u∥χ,ν then (11) is obtained. Thus ∥u∥2 is equiva-
lent to ∥u∥χ,ν .

Let us show that X is complete with respect to
the norm ∥u∥2 . Let {un} be a Cauchy sequence

in X, i.e. ∥un − um∥0 → 0,
∥∥∥u(2)n − u

(2)
m

∥∥∥
0

→

0,
∥∥∥u(4)n − u

(4)
m

∥∥∥
0
→ 0, (n,m→ ∞) . So, there exist

u, v, w ∈ Y with ∥un − u∥0 → 0,
∥∥∥u(2)n − v

∥∥∥
0
→ 0,∥∥∥u(4)n − w

∥∥∥
0
→ 0, (n→ ∞) . Since {un} ⊂ X, from

Lemma 4 we have for ∀u ∈ X

un(t) =

∫ 1

0

G(t, s)(−u(2)n (s))ds

+A0(−u(2)n )t+B0(−u(2)n )(1− t)

(12)

and

u(2)n (t) =

∫ 1

0

G(t, s)(−u(4)n (s))ds

+A0(−u(4)n )t+B0(−u(4)n )(1− t).

(13)

Taking the limit in (12) and (13),

u(t) = −
∫ 1

0

G(t, s)v(s)ds+A0(−v)t+B0(−v)(1−t)

v(t) = −
∫ 1

0

G(t, s)w(s)ds+A0(−w)t+B0(−w)(1−t)

and so u(2) = v and v(2) = w.
Thus u ∈ X, we have ∥un − u∥2 → 0 (n→ ∞) ,

and so (X, ∥·∥2) is complete. Now it follows that
(X, ∥·∥χ,ν) is complete from the completeness of
(X, ∥·∥2) .

Notation. Set

∆j =

∣∣∣∣∣∣∣∣∣∣

m−2∑
i=1

aiφj(ξi)
m−2∑
i=1

aiψj(ξi)− 1

m−2∑
i=1

biφj(ξi)− 1
m−2∑
i=1

biψj(ξi)

∣∣∣∣∣∣∣∣∣∣
, (14)

Aj(g)

= −
1

∆j

∣∣∣∣∣∣∣∣∣∣

m−2∑
i=1

ai

∫ 1

0
Gj(ξi, s)g(s)ds

m−2∑
i=1

aiψj(ξi)− 1

m−2∑
i=1

bi

∫ 1

0
Gj(ξi, s)g(s)ds

m−2∑
i=1

biψj(ξi)

∣∣∣∣∣∣∣∣∣∣
,

(15)

Bj(g)

= −
1

∆j

∣∣∣∣∣∣∣∣∣∣

m−2∑
i=1

aiφj(ξi)

m−2∑
i=1

ai

∫ 1

0
Gj(ξi, s)g(s)ds

m−2∑
i=1

biφj(ξi)− 1

m−2∑
i=1

bi

∫ 1

0
Gj(ξi, s)g(s)ds

∣∣∣∣∣∣∣∣∣∣
,

(16)

where j = 1, 2, 3.

Remark 1. For any g ∈ Y, we have

|Ai(g)| ≤ |Ai(1)| ∥g∥0 , |Bi(g)| ≤ |Bi(1)| ∥g∥0 ,

where i = 1, 2, 3.

In the rest of the paper, we make the following as-
sumptions:

(A1)
m−2∑
i=1

aiψj(ξi) < 1,
m−2∑
i=1

biφj(ξi) < 1; j = 1, 2, 3.

Lemma 7. [3]. Let (H2), (A1) hold. Assume that
(H4) ∆j < 0, i = 1, 2, 3.

Then for any g ∈ C [0, 1] , the problem

− u(2) + λiu = g(t), 0 < t < 1

u(0) =
m−2∑
i=1

aiu(ξi), u(1) =
m−2∑
i=1

biu(ξi)

has a unique solution

u(t) =

∫ 1

0

Gi(t, s)g(s)ds+Ai(g)φi(t)

+Bi(g)ψi(t).

(17)

Moreover, if g ≥ 0, then u(t) ≥ 0, t ∈ [0, 1] .

Proof. The proof follows by routine calculations.
Since ∆j < 0, we have Ai(g) ≥ 0, Bi(g) ≥ 0,
i = 1, 2, 3.

Define an operator Ti : Y → Y by

(Tig)(t) =

∫ 1

0

Gi(t, s)g(s)ds+Ai(g)φi(t)

+Bi(g)ψi(t), i = 1, 2, 3.

(18)
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Using Lemma 1. and Lemma 3. we have

|(Tig)(t)| =
∣∣∣∣ ∫ 1

0

Gi(t, s)g(s)ds+Ai(g)φi(t)

+Bi(g)ψi(t)

∣∣∣∣
≤ Ci

∫ 1

0

Gi(s, s)ds ∥g∥0

+Ai(1) ∥g∥0 φi(t) +Bi(1) ∥g∥0 ψi(t)

≤ {CiDi +Ai(1)Ei +Bi(1)Fi} ∥g∥0
=Mi ∥g∥0

where Mi = CiDi + Ai(1)Ei + Bi(1)Fi, Di =∫ 1

0
Gi(s, s)ds, Ei = maxt∈[0,1] |φi (t)| , and Fi =

maxt∈[0,1] |ψi (t)| .
Thus ∥Tig∥0 ≤Mi ∥g∥0 , and so

∥Ti∥ ≤Mi, i = 1, 2, 3. (19)

Notice that

− u(6) + au(4) + bu(2) + cu =

(
− d2

dt2
+ λ1

)
(
− d2

dt2
+ λ2

)(
− d2

dt2
+ λ3

)
u = h(t)

(20)

so we can easily get:

Lemma 8. Let (H2), (H3), (H4) and (A1) hold. Then
for any h ∈ Y, the problem:

−u(6) + au(4) + bu(2) + cu = h(t), 0 < t < 1 (21)

u(2i−2)(0) =
m−2∑
i=1

aiu
(2i−2)(ξi), i = 1, 2, 3

u(2i−2)(1) =
m−2∑
i=1

biu
(2i−2)(ξi), i = 1, 2, 3

(22)

has a unique solution

u(t) =

∫ 1

0

∫ 1

0

∫ 1

0

G3(t, v)G2(v, τ)G1(τ, s)h(s)dsdτdv

+

∫ 1

0

∫ 1

0

G3(t, v)G2(v, τ)[A1(h)φ1(τ)

+B1(h)ψ1(τ)t]dτdv

+

∫ 1

0

G3(t, v)[A2(T1(h))φ2(v)

+B2(T1(h))ψ2(v)]dv +A3((T2T1)(h))φ3(t)

+B3((T2T1)(h))ψ3(t), tϵ[0, 1]

(23)

where

T1(h)(t) =

∫ 1

0

G1(t, s)h(s)ds+A1(h)φ1(t)

+B1(h)ψ1(t)

(24)

and

(T2T1)(h)(t) =

∫ 1

0

∫ 1

0

G2(t, τ)G1(τ, s)h(s)ds

+A1(h)φ1(τ) +B1(h)ψ1(τ)dτ

+A2(T1(h))φ2(t)

+B2(T1(h))ψ2(t)

(25)

whereGi, Ai, Bi, i = 1, 2, 3 are defined as in (7), (15)
and (16). In addition, if h ≥ 0, then u(t) ≥ 0, t ∈
[0, 1] .

Define an operator T : Y → Y by

(Th)(t) = (T3T2T1)(h)(t)

=

∫ 1

0

∫ 1

0

∫ 1

0

G3(t, v)G2(v, τ)

G1(τ, s)h(s)dsdτdv

+

∫ 1

0

∫ 1

0

G3(t, v)G2(v, τ)[A1(h)φ1(τ)

+B1(h)ψ1(τ)]dτdv

+

∫ 1

0

G3(t, v)[A2(T1(h))φ2(v)

+B2(T1(h))ψ2(v)]dv

+A3((T2T1)(h))φ3(t)

+B3((T2T1)(h))ψ3(t)

(26)

where T1(h)(t) and T2T1(h)(t) are defined by (24)
and (25) respectively.

Lemma 9. Suppose (H2), (H3), (H4) and (A1) hold,
then T : Y → (X, ∥u∥κ,ν) is linear completely
continuous where χ = λ1 + λ3, ν = λ1λ3 and
∥T∥ ≤M2.

Proof. The proof of complete continuous is similar to
the proof of Lemma 2.8 in [4], so we omit it. Next we
will show that ∥T∥ ≤ M2. Assume that h ∈ Y and
u = Th is the solution the boundary value problem
(21-22). It is clear that the operator T maps Y into X.
Using (20) it is easy to see that

−u(2) + λiu =

∫ 1

0

∫ 1

0

Gj(t, v)Gk(v, τ)h(τ)dτ

+Ak(h)φk(v) +Bk(h)ψk(v)dv

+Aj(Tk(h))φj(t) +Bj(Tk(h))ψj(t),

(27)

and

u(4) − (λi + λj)u
(2) + λiλju

=

∫ 1

0

Gk(t, v)h(v)dv +Ak(h)φk(t)

+Bk(h)ψk(t),

(28)

where i, j, k = 1, 2, 3 and i ̸= j ̸= k.
We will now show ∥Th∥χ,ν ≤ M2 ∥h∥0 ,∀h ∈ Y,

where χ = λ1 + λ3 ≥ 0, ν = λ1λ3 ≥ 0. For this,
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∀h ∈ Y+, let u = Th, and by Lemma 3, u ∈ X ∩ Y+.
The equality (27) with the assumption λ2 ≤ 0 implies
that u(2) ≤ 0. Similarly, the equality (28) with the
assumptions λ2 + λ3 < 0 and λ2λ3 ≤ 0 implies that
u(4) ≥ 0.

From (28) with χ = λ1 + λ3 ≥ 0, ν = λ1λ3 ≥ 0
and u ≥ 0, u(2) ≤ 0, u(4) ≥ 0 we immediately have

|u(4)(t)|+ χ|u(2)(t)|+ ν|u(t)|
= u(4) − (λ1 + λ3)u

(2) + λ1λ3u

=

∫ 1

0

G2(t, v)h(v)dv +A2(h)φ2(t)

+B2(h)ψ2(t).

(29)

For any h ∈ Y, let h = h1 − h2, u1 = Th1, u2 =
Th2, where h1, h2 are the positive part and negative
part of h, respectively. Let u = Th, then u = u1−u2.
From the above, we have ui ≥ 0, u

(2)
i ≤ 0, u

(4)
i ≥

0, i = 1, 2, and the following equality holds:

|u(4)i (t)|+ (λ1 + λ3)|u(2)i (t)|+ λ1λ3|ui(t)|

=

∫ 1

0

G2(t, v)hi(v)dv +A2(hi)φ2(t)

+B2(hi)ψ2(t) = T2hi.

(30)

So, by (30), we have

|u(4)(t)|+ (λ1 + λ3)|u(2)(t)|+ λ1λ3|u(t)|

= |u(4)1 (t)− u
(4)
2 (t)|+ (λ1 + λ3)|u(2)1 (t)− u

(2)
2 (t)|

+ λ1λ3|u1(t)− u2(t)| ≤ (|u(4)1 (t)|

+ (λ1 + λ3)|u(2)1 (t)|+ λ1λ3|u1(t)|)

+
(
|u(4)2 (t)|+ (λ1 + λ3)|u(2)2 (t)|+ λ1λ3|u2(t)|

)
= T2h1 + T2h2 = T2|h| ≤ (C2D2 +A2(1)E2

+B2(1)F2) ∥|h|∥0 =M2 ∥h∥0 .

Thus ∥Th∥χ,ν ≤ M2 ∥h∥0 , and so ∥T∥ ≤ M2.

Lemma 10. Let fn : (0, 1) → R be a sequence of a
continuously differentiable functions. If

i) lim
n→∞

fn(x) = f(x) on (0, 1) , and

ii) lim
n→∞

f
′

n(x) = p(x), where convergence is uni-

form on (0, 1) ,
then f(x) is continuously differentiable on (0, 1) ,

and for all x ∈ (0, 1) we have

lim
n→∞

f
′

n(x) = f
′
(x).

We list the following conditions for convenience:
Let a, b, c ∈ R, a = λ1 + λ2 + λ3 > −π2, b =

−λ1λ2 − λ2λ3 − λ1λ3 > 0, c = λ1λ2λ3 < 0
where λ1 ≥ 0 ≥ λ2 ≥ −π2, 0 ≤ λ3 < −λ2 and
π6 + aπ4 − bπ2 + c > 0. Let a = supt∈[0,1]A(t),

b = inft∈[0,1]B(t), c = supt∈[0,1] C(t). Let K =
max0≤t≤1 [−A (t) +B (t)− C (t)− (−a+ b− c)] ,
Γ = π6 + aπ4 − bπ2 + c, Γ1 = 1−L

σC1C2C3N1N3
,

L1 =M1M2M3K, L = KM2.

3 Main results

Theorem 1. Assume that (H2) , (H3) , (H4) and
(A1) hold, and L < 1, L1 < 1. If

lim
|u|+|v|→0+

inf min
t∈[0,1]

f(t, u, v)

|u|+ |v|
> Γ

and

lim
|v|→∞

sup max
t∈[0,1]

sup
u∈[0,∞)

f(t, u, v)

|v|
< Γ1

then BVP (1-2) has at least one positive solution.

Proof. Step 1. We consider the existence of positive
solution of (1-2) (the function u ∈ C6(0, 1)∩C4[0, 1]
is a positive solution of (1-2), if u ≥ 0, t ∈ [0, 1] ,
and u ̸= 0). Consider the following boundary value
problem:

− u(6) + au(4) + bu(2) + cu = −(A(t)− a)u(4)

− (B(t)− b)u
(2)

− (C(t)− c)u+ h(t),
(31)

u(2i−2)(0) =

m−2∑
i=1

aiu
(2i−2)(ξi), i = 1, 2, 3

u(2i−2)(1) =

m−2∑
i=1

biu
(2i−2)(ξi), i = 1, 2, 3.

(32)

For any u ∈ X, let

Gu = −(A(t)−a)u(4)−(B(t)−b)u
(2)

−(C(t)−c)u.

Obviously, the operator G : X → Y is linear. By
Lemmas 5 and 6, ∀u ∈ X, t ∈ [0, 1] , we have

|(Gu)(t)| ≤ [−A(t) +B(t)− C(t)

− (−a+ b− c)]∥u∥2
≤ K1∥u∥2 ≤ K1σ

2∥u∥χ,ν

where

K1 = max
t∈[0,1]

[−A(t) +B(t)− C(t)− (−a+ b− c)] ,

χ = λ1 + λ3 ≥ 0, ν = λ1λ3 ≥ 0. Hence ∥Gu∥0 ≤
K ∥u∥χ,ν , where K = K1σ

2 and so ∥G∥ ≤ K. Also
u ∈ C4 [0, 1]∩C6 (0, 1) is a solution of (31) iff u ∈ X
satisfies u = T (Gu+ h) , i.e.

u ∈ X, (I − TG) u = Th. (33)

Let L = M2K. The operator I − TG maps X
into X. From ∥T∥ ≤ M2 together with ∥G∥ ≤
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K and condition M2K < 1, and applying operator
spectra theorem, we find that (I − TG)

−1 exists and
it is bounded.

Step 2 . Let H = (I − TG)−1T. Then (33) is
equivalent to u = Hh. By the Neumann expansion
formula, H can be expressed by

H = (I + TG+ (TG)2 + . . .+ (TG)n + . . .)T

= T + (TG)T + (TG)2T + . . .+ (TG)nT + . . .

(34)

The complete continuity of T with the continuity
of (I − TG)−1 yields that the operator H : Y → X is
completely continuous.

∀h ∈ Y+, let u = Th, the u ∈ X ∩Y+, and u(2) ≤
0, u(4) ≥ 0. Thus we have

(Gu)(t) = −(A(t)− a)u(4) − (B(t)− b)u(2)

− (C(t)− c)u ≥ 0, t ∈ [0, 1].

Hence

∀h ∈ Y+, (GTh) (t) ≥ 0, t ∈ [0, 1] . (35)

and so (TG) (Th) (t) = T (GTh) (t) ≥ 0, t ∈ [0, 1] .
By induction it is easy to see

∀n ≥ 1, h ∈ Y+, (TG)
n(Th)(t)≥0, t ∈ [0, 1]. (36)

By (34), we have

∀h ∈ Y+, (Hh)(t) = (Th)(t) + (TG)(Th)(t)

+ (TG)2(Th)(t) + . . .+ (TG)n(Th)(t)

+ . . . ≥ (Th)(t), t ∈ [0, 1].

(37)

and so H : Y+ → Y+ ∩X.
On the other hand, we have

∀h ∈ Y+, (Hh)(t)

≤ (Th)(t) + ∥(TG)∥(Th)(t)
+ ∥(TG)∥2(Th)(t) + . . .+ ∥(TG)∥n(Th)(t)
+ . . . ≤ (1 + L+ . . .+ Ln + . . .)(Th)(t)

=
1

1− L
(Th)(t).

(38)

So the following inequalities hold:

(Hh) (t) ≤ 1

1− L
∥(Th)∥0 , t ∈ [0, 1] . (39)

∥(Hh)∥0 ≤ 1

1− L
∥(Th)∥0 . (40)

For any u ∈ Y+∩C2 [0, 1] , define Fu = f(t, u, u(2)).
By assuming (H1) ,we have that F : Y+∩C2 [0, 1] →
Y+ is continuous. It is easy to see that u ∈ C4 [0, 1] ∩
C6 (0, 1) being a positive solution of (1-2) is equiva-

lent to u ∈ Y+ ∩ C2 [0, 1] being a nonzero solution
equation as follows:

u = HFu. (41)

Let Q = HF. Obviously, Q : Y+ ∩ C2 [0, 1] →
Y+ ∩ C2 [0, 1] is completely continuous. We next
show that the operator Q has a nonzero fixed point in
Y+ ∩ C2 [0, 1] .

Step 3. From (31) we also have

(
− d2

dt2
+ λ1

)(
− d2

dt2
+ λ3

)
V1 = Gu+h(t) (42)

V1(0) =
m−2∑
i=1

aiV1(ξi),

V1(1) =
m−2∑
i=1

biV1(ξi)

V
(2)
1 (0) =

m−2∑
i=1

aiV
(2)
1 (ξi),

V
(2)
1 (1) =

m−2∑
i=1

biV
(2)
1 (ξi)

(43)

where V1(t) = (− d2

dt2 + λ2)u. It is easy to see that
u(0) =

∑m−2
i=1 aiu(ξi), u(1) =

∑m−2
i=1 biu(ξi). So

the following boundary value problem

− u(2)(t) + λ2u(t) = V1(t), (44)

u(0) =
m−2∑
i=1

aiu(ξi), u(1) =
m−2∑
i=1

biu(ξi) (45)

can be solved by

u(t) = (T2V1)(t) =

∫ 1

0

G2(τ, s)V1(s)ds

+A2(V1)φ2(t) +B2(V1)ψ2(t).

(46)

Moreover from (42) using (46) we obtain

(
− d2

dt2
+ λ1

)(
− d2

dt2
+ λ3

)
V1 = GT2V1+h(t) (47)

V1(0) =
m−2∑
i=1

aiV1(ξi),

V1(1) =
m−2∑
i=1

biV1(ξi)

V
(2)
1 (0) =

m−2∑
i=1

aiV
(2)
1 (ξi),

V
(2)
1 (1) =

m−2∑
i=1

biV
(2)
1 (ξi)

(48)

From eq. (47), we have

V1(t) = T3T1(GT2V1 + h(t)).
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On the other hand, V1 ∈ C2 [0, 1] ∩ C4 (0, 1)
is a solution of (47-48) iff V1(t) satisfies V1 =
T3T1 (GT2V1 + h) , i.e.

(I − T3T1GT2)V1 = T3T1h. (49)

From ∥T3T1∥ ≤ M3M1, ∥T2∥ ≤ M2 together
with ∥G∥ ≤ K and condition M1M2M3K < 1,
applying operator spectra theorem, we have that the
(I − T3T1GT2)

−1 exists and it is bounded. Let L1 =
M1M2M3K.

Let H1 = (I − T3T1GT2)
−1T3T1 then (49) is

equivalent to V1 = H1h. By the Neumann expansion
formula, H1 can be expressed by

H1 =
(
I + T3T1GT2 + (T3T1GT2)

2

+ . . .+ (T3T1GT2)
n
+ . . .

)
T3T1 = T3T1

+ (T3T1GT2)T3T1 + (T3T1GT2)
2
T3T1

+ . . .+ (T3T1GT2)
n
T3T1 + . . . .

(50)

The complete continuity of T3T1 with the conti-
nuity of (I − T3T1GT2)

−1 yields that the operator
H1 : Y → C2 [0, 1] is completely continuous.

By (50), we have ∀h ∈ Y+,

(H1h)(t) = (T3T1h)(t)

+ ((T3T1GT2)T3T1h)(t)

+ ((T3T1GT2)
2T3T1h)(t)

+ . . .+ ((T3T1GT2)
nT3T1h)(t)

+ . . . ≥ (T3T1h)(t), t ∈ [0, 1].

(51)

and so H1 : Y+ → Y+ ∩ C2 [0, 1] .
On the other hand, we have ∀h ∈ Y+,

(H1h)(t) ≤ (Th)(t)

+ ∥(T3T1GT2)∥(T3T1h)(t)
+ ∥(T3T1GT2)∥2(T3T1h)(t)
+ . . .+ ∥(T3T1GT2)∥n(T3T1h)(t)
+ . . . ≤ (1 + L1 + . . .+ Ln

1 + . . .)

(T3T1h)(t)

=
1

1− L1
(T3T1h)(t).

(52)

So the following inequalities hold:

(H1h) (t) ≤
1

1− L1
∥(T3T1h)∥0 , (53)

∥(H1h)∥0 ≤ 1

1− L1
∥(T3T1h)∥0 . (54)

Moreover from (44) using (34) and (50) we obtain

u(2)(t) = λ2u(t)− V1(t) = λ2Hh(t)−H1h(t) ≤ 0,

where λ2 ≤ 0. Let E(t) = G3(t, t).

Let

P = {u ∈ E : u(t) ≥ 0, u(t)

≥ ΘE(t)∥u∥0, − u(2)(t)

≥ Θ2E(t)∥u(2)∥0, t ∈ [0, 1]},

where

Θ =
δ1δ2δ3

C1C2C3N3
(1− L),

Θ2 =
δ1δ3

(
−λ2δ2Ĝ1 + Ĝ2

)
M (−λ2C1C2C3N3 + C1C3N4)

,

N3 = D2D3 +D3 [A2(1) +B2(1)]

+ (A3(1) +B3(1)) (D2 +A2(1) +B2(1)) ,

Ĝ1 = g32g21 + g32 [A2(G1) +B2(G1)]

+ [A3(G2) +B3(G2)]

[g21 +A2(G1) +B2(G1)]),

Ĝ2 = g31 +A3(G1) +B3(G1),

N4 = D3 +A3(1) +B3(1),

M = max

{
1

1− L
,

1

1− L1

}
.

Step 4. It is easy to see that P is a cone in E.
Now we show QP ⊂ P. For ∀u ∈ P, let h1 = Fu,
then h1 ∈ Y+. From (37), (Qu) (t) = (HFu) (t) ≥
(TFu) (t) , t ∈ [0, 1] . From Lemma 3 for all u ∈ P,
we have

(TFu)(t)

=

∫ 1

0

∫ 1

0

∫ 1

0

G3(t, v)G2(v, τ)G1(τ, s)(Fu)(s)dsdτdv

+

∫ 1

0

∫ 1

0

G3(t, v)G2(v, τ)[A1(Fu)φ1(τ)

+B1(Fu)ψ1(τ)]dτ +

∫ 1

0

G3(t, v)[A2(T1(Fu))φ2(v)

+B2(T1(Fu))ψ2(v)]dv +A3(T2T1(Fu))φ3(t)

+B3(T2T1(Fu))ψ3(t) ≤ C1C2C3

[ ∫ 1

0

G3(v, v)dv

]
[ ∫ 1

0

G2(τ, τ)dτ

]
t

[ ∫ 1

0

G1(s, s)(Fu)(s)ds

]
+ C1C2C3

[ ∫ 1

0

G3(v, v)dv

][ ∫ 1

0

G2(τ, τ)dτ

]
[
A1(Fu) +B1(Fu)

]
+ C1C2C3

[ ∫ 1

0

G3(v, v)dv

]
[A2(1) +B2(1)] ·

[ ∫ 1

0

G1(s, s)(Fu)(s)ds

+A1(Fu) +B1(Fu)

]
+ C1C2C3[A3(1)
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+B3(1)]

[ ∫ 1

0

G2(τ, τ)dτ +A2(1) +B2(1)t

]
·
[ ∫ 1

0

G1(s, s)(Fu)(s)ds+A1(Fu) +B1(Fu)

]
= C1C2C3N3

[ ∫ 1

0

G1(s, s)(Fu)(s)ds

+A1(Fu) +B1(Fu)

]
.

where T1(h)(t) and T2T1(h)(t) is defined by (24) and
(25) respectively.

Thus∫ 1

0

G1(s, s)(Fu)(s)ds+A1(Fu) +B1(Fu)

≥ 1

C1C2C3N3
∥TFu∥0.

(55)

Also from (40) and (55) we have

(Qu)(t) ≥ (TFu)(t) ≥

δ1δ2δ3G3(t, t)

[∫ 1

0

G3(v, v)G2(v, v)dv

]
·
[∫ 1

0

G2(τ, τ)G1(τ, τ)dτ

][∫ 1

0

G1(s, s)(Fu)(s)ds

]
+ δ1δ2δ3G3(t, t)

[∫ 1

0

G3(v, v)G2(v, v)dv

]
·
[∫ 1

0

G2(τ, τ)G1(τ, τ)dτ

]
[A1(Fu) +B1(Fu)]

+ δ2δ3G3(t, t)

[∫ 1

0

G3(v, v)G2(v, v)dv

]
[A2(e1(F ))

+B2(e1(F ))] + δ3G3(t, t)[A3(e2(F )) +B3(e2(F ))]

≥ δ1δ2δ3G3(t, t)(g32g31 + g32[A2(G1) +B2(G1)]

+ [A3(G2) +B3(G2)][g21 +A2(G1) +B2(G1)]

·
[∫ 1

0

G1(s, s)(Fu)(s)ds+A1(Fu) +B1(Fu)

]
≥ δ1δ2δ3E(t)

1

C1C2C3N3
∥TFu∥0

≥ E(t)
δ1δ2δ3

C1C2C3N3
(1− L)∥HFu∥0

= ΘE(t)∥Qu∥0,

where gij =

∫ 1

0

Gi(v, v)Gj(v, v)dv , (i, j = 1, 2, 3,

i ̸= j). So we have

(Qu)(t) ≥ ΘE(t)∥Qu∥0. (56)

Similarly, it is easy to see that

−(Qu)(2)(t) ≥ Θ2E(t)∥(Qu)(2)∥0. (57)

Indeed, using (34) H can be expressed by

Hh = (I + TG+ (TG)2

+ . . .+ (TG)n + . . .)Th

= Th+ TGTh+ . . .+ (TG)2Th

+ . . .+ (TG)nTh+ . . .

= T (Ih+GTh+ (GT )2h

+ . . .+ (GT )nh+ . . .).

(58)

If we differentiate the right side of (34) with help of
(58), we have the following: ∀h ∈ Y+,

T
′
(Ih+GTh+ (GT )2h+ . . .+ (GT )nh+ . . .)

= T
′
h+ T

′
G(Th+ (TG)Th

+ . . .+ (TG)nTh+ . . .)

≤ T
′
h+ T

′
G(Th+ ∥TG∥Th

+ . . .+ ∥TG∥nTh+ . . .)

≤ T
′
h+ T

′
G(1 + L+ . . .+ Ln + . . .)Th

= T
′
h+

1

1− L
(T

′
G)Th.

Then the series

T
′
h+ T

′
GTh+ T

′
G(TG)Th

+ . . .+ T
′
G(TG)nTh+ . . .

converges uniformly on (0, 1).
Using Lemma 10, if we differentiate both sides of

(34), we get

(Hh)
′
= T

′
h+ T

′
GTh+ T

′
G(TG)Th

+ . . .+ T
′
G(TG)nTh+ . . .

(59)

Similarly, using Lemma 10 it is also seen that

(Hh)(2) = T (2)h+ T (2)GTh+ T (2)G(TG)Th

+ . . .+ T (2)G(TG)nTh+ . . . ,
(60)

because the series

T (2)h+ T (2)GTh+ T (2)G(TG)Th

+ . . .+ T (2)G(TG)nTh+ . . .

also converges uniformly on (0, 1). If we differentiate
both sides of (59), we find (60).

Finally, we differentiate twice both sides of equa-
tion (26) with respect to t in order to find T (2)

(Th)(2)(t) = λ2(Th)(t)

−
∫ 1

0

∫ 1

0

G3(t, τ)G1(τ, s)h(s)dsdτ

−
∫ 1

0

G3(t, τ)[A1(h)φ1(τ)

+B1(h)ψ1(τ)]dτ

− [A3(T1(h))φ3(v) +B3(T1(h))ψ3(v)]

= λ2(Th)(t)− (T3T1h)(t)..

(61)
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Using (60) and (61) we obtain

(Hh)(2) = λ2(Hh)(t)− (H1h)(t)

where (Hh)(t) and (H1h)(t) is in (34) and (50), re-
spectively. Let h(t) = F (u), then we obtain

(Qu)(2)(t) = (HF (u))(2)

= λ2(HF (u))(t)− (H1F (u))(t).

The proof of (57) is similar to the proof of (56), so
we omit it.

So, QP ⊂ P.
Step 5. Let d2 = min 1

4≤t≤ 3
4
E(t), then d2 > 0,

and let Λ = Θd2. Thus ∀u ∈ P, u(t) ≥ Θd2 ∥u∥0 =
Λ ∥u∥0 , t ∈

[
1
4 ,

3
4

]
.

By

lim
|u|+|v|→0+

inf min
t∈[0,1]

(
f(t, u, v)

|u|+ |v|
) > Γ,

we can choose ε > 0 such that lim|u|+|v|→0+

inf mint∈[0,1](
f(t,u,v)
|u|+|v| ) > Γ + ε.

Then ∃ r > 0 such that f(t, x, y) > (Γ + ε)(|x|+
|y|) t ∈ [0, 1] , 0 < |x| + |y| < (σ + 1)r. Let Ωr ={
u ∈ P :

∥∥u(2)∥∥
0
< r

}
. For any u ∈ ∂Ωr, we have∥∥u(2)∥∥

0
= r, 0 < u(t) ≤ ∥u∥0 ≤ σr, t ∈ (0, 1),

and so f(t, u(t), u(2)(t)) > (Γ + ε)(u(t) + |u(2)(t)|),
t ∈ (0, 1). Let d3 = min 1

4≤t≤ 3
4
E2(t), then d3 > 0,

and let δ = Θ2d3.
By |u(2)(t)| ≥ δ

∥∥u(2)∥∥
0
= δr, t ∈

[
1
4 ,

3
4

]
, it fol-

lows that

f(t, u(t), u(2)(t)) > (Γ + ε)(u(t) + |u(2)(t)|)
≥ (Γ + ε)|u(2)(t)|
≥≥ (Γ + ε)δ∥u(2)∥0, .

where t ∈ [ 14 ,
3
4 ].

Step 6. Now we shall prove infu∈∂Ωr ∥(Qu)(2)∥0
> 0. For any u ∈ ∂Ωr, by (37) we have

∥∥∥(Qu)(2)∥∥∥
0
≥ 1

σ
∥Qu∥0

≥ 1

σ
Qu

(
1

2

)
≥ 1

σ
(TFu)

(
1

2

)
=

1

σ

∫ 1

0

∫ 1

0

∫ 1

0

G3

(
1

2
, v

)
G2(v, τ)

G3(τ, s)f(s, u(s), u
(2)(s))dsdτdv

+
1

σ

∫ 1

0

∫ 1

0

G3

(
1

2
, v

)
G2(v, τ)[A1(f)φ1(τ)

+B1(f)ψ1(τ)]dτdv

+
1

σ

∫ 1

0

G3(
1

2
, v)[A2(T1(f))φ2(v)

+B2(T1(f))ψ2(v)]dv

+
1

σ
A3(T2T1(f))φ3

(
1

2

)
+

1

σ
B3(T2T1(f))ψ3

(
1

2

)
≥ 1

σ

∫ 1

0

∫ 1

0

∫ 1

0

G3

(
1

2
, v

)
G2(v, τ)

G3(τ, s)f(s, u(s), u
(2)(s))dsdτdv

≥ 1

σ
δ1δ2δ3G3

(
1

2
,
1

2

)
m32m21∫ 3

4

1
4

G1(s, s)f(s, u(s), u
(2)(s))ds

≥ 1

σ
δ1δ2δ3G3

(
1

2
,
1

2

)
m32m21

C0(Γ + ε)δr > 0.

(62)

Therefore, infu∈∂Ωr

∥∥(Qu)(2)∥∥
0
> 0.

Next we shall prove ∀u ∈ ∂Ωr, 0 < κ ≤ 1, Qu ̸=
κu.

Suppose the contrary, that ∃u0 ∈ ∂Ωr, 0 < κ0 ≤ 1,
such that Qu0 = κ0u0. By (37) we get

u0(t) ≥ κ0u0(t) = (Qu0)(t) ≥ (TFu0)(t)

= T (f(t, u0(t), u
(2)
0 (t))), t ∈ [0, 1] .

Let v0 = T (f(t, u0(t), u
(2)
0 (t)). Then u0(t) ≥

v0(t) and v0(t) satisfies the following BVP:

− v
(6)
0 + av

(4)
0 + bv

(2)

0 + cv0

= f(t, u0(t), u
(2)
0 (t)), 0 < t < 1.

(63)

Multiplying (63) by sinπt and integrating on [0, 1]
together with

v
(2i−2)
0 (0) =

m−2∑
i=1

aiv
(2i−2)
0 (ξi), i = 1, 2, 3

v
(2i−2)
0 (1) =

m−2∑
i=1

biv
(2i−2)
0 (ξi), i = 1, 2, 3

and u0(t) ≥ v0(t), we get

Γ

∫ 1

0

sinπtv0(t)ds+ π((b− aπ2 − π4)

m−2∑
i=1

(ai + bi)v0(ξi) + (aπ + π3)

m−2∑
i=1

(ai + bi)v
(2)
0 (ξi)−

m−2∑
i=1

(ai + bi)v
(4)
0 (ξi))

=

∫ 1

0

sinπtf(t, u0(t), u
(2)
0 (t))dt.
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It is easy to see that b−aπ2−π4 < 0, aπ+π3 > 0,

and v0(ξi) ≥ 0, v
(2)
0 (ξi) ≤ 0, v

(4)
0 (ξi) ≥ 0, it follows:

Γ

∫ 1

0

sinπtv0(t)dt ≥
∫ 1

0

sinπtf(t, u0(t), u
(2)
0 (t))dt.

(64)
By f(t, u0(t), u

(2)
0 (t)) > (Γ + ε)(|u0(t)| +

|u(2)0 (t)|), t ∈ (0, 1), we have

Γ

∫ 1

0

sinπtu0(t)dt ≥ Γ

∫ 1

0

sinπtv0(t)dt

≥
∫ 1

0

sinπtf(t, u0(t), u
(2)
0 (t))dt

≥ (Γ + ε)

∫ 1

0

sinπs(|u0(t)|+ |u(2)0 (t)|)dt

≥ (Γ + ε)

∫ 1

0

sinπtu0(t)dt.

Since
∫ 1

0

sinπsu0(s)ds > 0, we have Γ ≥ (Γ + ε),

a contradiction.
We obtain i(Q,Ωr, P ) = 0.
Step 7. By lim|v|→+∞ supmaxt∈[0,1] supu∈[0,∞)(

f(t,u,v)
|v|

)
< Γ1, we choose 0 < ε < Γ1 such that

lim|v|→+∞ supmaxt∈[0,1] supu∈[0,∞)(
f(t,u,v)

|v| ) <

(Γ1 − ε). Then ∃R0, for |y| ≥ R0, f(t, x, y) <
(Γ1 − ε)|y|, t ∈ [0, 1].

Let M̂ = sup(t,x,|y|)∈[0,1]×[0,∞]×[0,R0] f(t, x, y).
Then

f(t, x, y) < (Γ1 − ε)|y|+ M̂,

∀ t ∈ [0, 1], x ∈ [0,∞), |y| ∈ [0,∞).

Take R > max
{
r, M̂ε

}
. Putting

ΩR =
{
u ∈ P :

∥∥∥u(2)∥∥∥
0
< R

}
,

we next prove ∀u ∈ ∂ΩR, ν ≥ 1, νu ̸= Qu.
Assume on the contrary that ∃ν0 ≥ 1, u0 ∈ ∂ΩR,

ν0u0 ̸= Qu0.
By (38) we get

u0(t) ≤ ν0u0(t) = (Qu0)(t) = (HFu0)(t)

≤ 1

1− L
(TFu0)(t) ≤

1

1− L
C1C2C3N3[∫ 1

0

G1(s, s)(Fu0)(s)ds+A1(Fu0) +B1(Fu0)

]
≤ 1

1− L
C1C2C3N3

[
(Γ1 − ε)

∥∥u”0∥∥0 + M̂
]

[∫ 1

0

G1(s, s)ds+A1(1) +B1(1)

]
≤ C1C2C3N1N3

1− L
(Γ1 − ε)∥u(2)0 ∥0

+
C1C2C3N1N3M̂

1− L

=

(
1− ε

Γ1

)
∥u0∥0 +

M̂

Γ1
, t ∈ [0, 1] .

Hence,

∥u0∥0 ≤ C1C2C3N1N3

1− L
(Γ1 − ε)∥u(2)0 ∥0

+
C1C2C3N1N3M̂

1− L
,

and using 1
σ∥u

(2)
0 ∥0 ≤ ∥u0∥0 we have

∥u(2)0 ∥0 ≤
(
1− ε

Γ1

)
∥u(2)0 ∥0 +

M̂

Γ1
, (65)

where Γ1 = 1−L
σC1C2C3N1N3

.

By (65), we have R =
∥∥∥u(2)0

∥∥∥
0
≤ M̂

ε , which is

contradicts to R > M̂
ε .Then i(Q,ΩR, P ) = 1. In

terms of the fixed index theory, we have i(Q,Ωr, P ) =
0, and so i(Q,ΩR\Ω̄r, P ) = 1. Thus BVP (1-2) has a
positive solution. This completes the proof.
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