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Abstract

In this paper we generalize the class of close-to-convex functions by the q-difference
operator, for functions with negative coefficients and we study some properties of this
generalized class. An analogue of the Polya-Schoenberg conjecture is proved.
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1 Introduction

Let U = {z € C : |z| < 1} be the unite disk in
the complex plane C. We denote by A the class of the
functions f, normalized by f(0) = 0 = f/(0) — 1,
which are analytic in U.

We say that f is starlike in U if f : U — C is
univalent and f(U) is a starlike domain with respect
to origin. It is well-known that f € A is starlike in U
if and only if

Re (Zf '(2)
f(2)
We denote by S* the class of starlike functions.
Let /C be the class of convex functions. We say that
f € Aisconvex in U, if f : U — C is univalent and
f(U) is a convex domain in C. It is known that the
function f € A is convex in U if and only if

)>O7 for all z € U.

1
zf/ (2)) >0,
f'(2)

We say that f € A is close-to-convex in U, if there
is a convex function g € K for which

f'(2)
9'(2)

Since if g € K then z¢g’ € S*, an equivalent defini-
tion of close-to-conexity is the following.

The function f € A is close-to-convex in U if there
exist a starlike function g € S* for which

zf'(2)
9(2)

Re<1+

Re zeU.

>0,

Re >0, z€eU.
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We denote by C' the class of close-to-convex func-
tions.

Let T denote a subclass of A consisting of func-
tions f of the form

fz)=2-> a;2, (1)
j=2

where a; > 0, j = 2,3,...and z € U. A function
f € T is called a function with negative coefficients. If
f € T and f is univalent, the followings are equivalent

[9]:
M 3 ja; <1,
j=2
(i) feT.

(i) f € T*, where T* = T N S*.

In our paper we generalize the class of close-to-
convex functions, for functions with negative coeffi-
cients, and we obtain some intresting results on this
generalized class.

In 1973, Ruscheweyh and Sheil-Small [7] proved
the P6lya-Schoenberg conjecture, namely if ¢ is con-
vex and f € S* or K, then f * ¢ also belong to S* or
K. In our paper we prove the analogue of this conjec-
ture for the generalized class of close-to-convex func-
tions.

(©2016 Published by “Petru Maior” University Press. This
is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).



2 Preliminaries

To prove our main results we need the following
preliminary definitions and theorems.
Let

flz)=2z— Zajzj
j=2
and

g(z) =z— Z bz,
j=2

then the Hadamard product or the convolutions of the
functions f and g is defined by

(f*9)(z) =2 =) a;bz" = (9% f)(2).
j=2

In 1908 Jackson introduced the Euler-Jackson g-
difference oprator.

For f € A of the form (1) and 0 < ¢ < 1, the
g-derivative of the function f is defined by

D f(z) = L=

where z # 0 and D, f(0) = f/(0).
From (2) we can deduce that

2

1—¢
1—-q

L J—1
a;z’ "7,

Dyf(z)=1->
j=2
where z # 0.

We note with [2q, 21, ..., 2; f] the divided differ-
ences at a system of distinct points zg, 21, ..., 2, Where

n f z
[ZO,Zl,...yzn;‘ﬂ = Z (Z — ZO) ( )(Z — Zn>

j=0 J J

The n-th order ¢ derivative of the function f is de-
fined in [8] as follows:

(DgN)(z) = [nlglz, 42, -, 4" 2 [, 3)
where [n], = qq"_—ll'

The g-derivative have several intresting application
in quantum mechanics and generally in physics.

Theorem 2.1. [10] Let f : U, € C — C be g-
derivable of order n, then

(DIf)(2) = (g —1)""=""g~Cn-

. e (< 1)7¢%0 (" 2),
=~ Tl — i Ve )

A generalization of the class of close-to-convex
functions by D, difference operator we can found
in [8]. In followings are given some generalizations
of the class of close-to-convex functions, in the case
of functions with negative coefficients, using the g-
difference operator.

31

Definition 2.1. A function f € T is said to be in the
generalized class of close-to-convex functions of order
7, denoted by UCC(7), if

Re 2Dy f(2) -

9(z)  —
where 0 <y < land g € T".
Remark 2.1. If v = 0 then UCC,y(0) = UCC,,.

Definition 2.2. A function f € T is said to be in the
generalized class of close-to-convex functions of or-
der v, relative to a fixed function g € T, denoted by

UCCy(g,7), if

zDgf(2)

fe 9(2)

>,

where 0 < v < 1.

Definition 2.3. A function f € T is said to be in the
class UCCY, if

2Dy f(2)

fe 9(2)

>0,
where g € T™.
3 Main results

Theorem 3.1. Let f(z) =z — > ajz9,a; >0, j €
i=2

{2,3,..}and 0 < vy < 1.
If f € UCCy(v), then there exist g € T*, g(z) =

1.5 .
bjz?, such that

.
j=2
S (7Ea-ab) <11 @
=2
iy
o0 1_
Do <1l )
=2

then f € UCCy(7).
In the particular case when

1—¢J
_Cf] a; <b;, j€{2,3,..}

the inequality (4) is necessary and sufficient condition
for f to belongs to UCC, (7).

Proof. Let f € UCCy(), then there exists g € T,

g(z) =z — Z b2’ such that
j=2
o zDqf(2)

t 9(2)

>, zeU.



If z € [0,1), we obtain

(6)

o0
We note that for z € [0, 1) we have z — Z ij‘j > 0,
=2

oo
because g € T™ and in this case Zjbj < 1, then

j=2
o0
Z bj < 1.
Jj=
The relation (6) is equivalent to
j
=t
For (5) we chose g(z) = z. Then

zDqf(2)
9(z)

—vbj)zj_l <1l-—v

'yfRe< f1)<1

is true if
v+ [Dgf(2) — 1] <1,

but we have

Y+ Dgf(2) = 1] <

o+

i

To prove the particular case, we suppose

aj—i—w

1—¢’

a; > bj, j € {2,3, }

Then we have

@J“ZV !

> 1—

> i -3

j=2
I—Zb |zt

> (11:q; 4 7bj>

| =2
<fy+]

— o0

1= b,
j=2
- ij)

7+

_qJ

’HZ(

if we suppose that the inequality (4) is true. O

<1,

32

Theorem 3.2. Let f(z

—Z—Zaj ,9(z

ijzj, g € T*, where a;,b; >0, j € {2,3,..} and
j=2

7 €[0,1).

If f e UCCy(y,

= 7 —

), then

Z(ll__quaj—vbj) <l-v.
j=2
Ir |
3 [%aj -] <1-9 ®

j=2
then f € UCCy(g,7).
In the particular case when

1—¢g7
].—qq a; S b]a .] € {2737"}a

then (7) implies that f € UCCy(g,7).

2,2

1+g¢
UCCy(g2,7), where go(z) = z — % € T* we have

Remark 3.1. When f3(z) = =z —

Re2Paf2(2) _p 21=2)  ,p 1oz
g2(2) z(1-2) 2—z
But
—1—¢ 27 ol

j=2
This show that (8) is only a sufficies condition.

Because in [7] the authors proved that the convolu-
tion of a starlike and a convex function is starlike, we
can give the following theorem.

fz—Za]z g(z

ijzj and let ¢(z) = z — chzj convex in U,
Jj=2 j=2
where aj,b;,c; >0, 7 € {2,3,..}.

If f € UCCy(g,7), where 1-

Theorem 3.3. Let f(z =z-—

qj
aj < bjforj €

I—gq
{2,3,..}, then f x ¢ € UCCy(g,).
Proof. Let
(f*d)(z) = 2= aje;2.
=2

We know from Definition 2.2 that if (f * ¢)(z) €
UCCy(g,7), then

2Dy(f * 9)(2)

Re v d)(2)

>



where (g ¢) € T* and 0 < v < 1.
Suppose f € UCCy(g,7). Then by Theorem 3.2 we
have

Jj=2

9

To finish our proof, we must to show
Z [fajcj — 'ybjcj} <1l-—7.
=2 1

Since ¢ € T, the above inequality is equivalent to
Z|Cj|[ aj—be}<1—V-
=R

Because ¢ is convex, by the coefficient delimitation
theorem for convex functions we have |c;| < 1, for
7j=2,3....

Then from (10) we obtain

(10)

§:|Cj|[1 a; Vba}
i=2
<E {1—qaj fybj}<lf'y,

and the proof is done.

Theorem 3.4. Let f(z) = z — Zajzj, g(z) =z —
j=2

Z bjzj e T* and

=2

z

/f(t)t“ldt,c € N*,

0

c+1
ZC

F(z) = I.f(2) =

1—g
If f € UCCy(g,7), where 1 _qq a; < bj forj €
{2,3,..}, then F € UCCy(g,7).

Proof. Suppose f € UCC,(g,~y). Then by Theorem
3.2 we have
Z[ qaj—'ybj}<1—7.

=l

We know that if f has the form (1) then

z
1
F(z) = 5 /f(t)tc_ldt:
z
0
o0 o0
c+1 , ;
_ R i
z ]Z:;C_'_ja]z z jz:;c]z
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If the

I e41
c+j

aj —bj| <1-=v

inequality is true, then according to Theorem 3.2 we
know that F' € UCCy(g,7).
Next we prove

c+1 b
. “a; — b,
et Y95

(1)

aj — ~yb;, forj > 2.

The inequality (11) is equivalent to

1—¢f 1
4 a; (1 — et ) > 0,
1—gq c+)
which is true for all ¢ € N* and j > 2, and the proof
is done. U

4 Conclusion

The class of close-to-convex functions has an im-
portant role in geometric function theory and it was
introduced by W. Kaplan.

In the Definition 2.1 we have generalized the class
of close-to-convex functions, using the g-difference
operator. In the Definition 2.2 we have generalized the
class of close-to-convex functions relative to a fixed
function g € T™.

For this two generalized class of functions, in The-
orem 3.1 and Theorem 3.2 we have proved several co-
efficient inequalities. Using these inequalities we have
proved an analogue of the Pélya-Schoenberg conjec-
ture, and finally we have showed the preserving prop-
ertie of the Bernardi integral operator defined on the
UCCy(g,) class.
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