

ABOUT A GENERALIZED CLASS OF CLOSE-TO-CONVEX FUNCTIONS DEFINED BY THE q-DIFFERENCE OPERATOR

Olga ENGEL, Cosmina NAICU

Babe¸s - Bolyai University Mihail Kog ˘alniceanu Street, *no.1*, *400084*, *Cluj-Napoca*, *Romania* engel_olga@hotmail.com, cosmina_naicu@yahoo.com

Abstract

In this paper we generalize the class of close-to-convex functions by the q*-difference operator, for functions with negative coefficients and we study some properties of this generalized class. An analogue of the Pólya-Schoenberg conjecture is proved.*

Keywords: close-to-convex functions, q-derivative, Pólya-Schoenberg conjecture

1 Introduction

Let $U = \{z \in \mathbb{C} : |z| < 1\}$ be the unite disk in the complex plane $\mathbb C$. We denote by $\mathcal A$ the class of the functions f, normalized by $f(0) = 0 = f'(0) - 1$, which are analytic in U .

We say that f is starlike in U if $f: U \to \mathbb{C}$ is univalent and $f(U)$ is a starlike domain with respect to origin. It is well-known that $f \in A$ is starlike in U if and only if

$$
\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > 0, \text{ for all } z \in U.
$$

We denote by S^* the class of starlike functions.

Let K be the class of convex functions. We say that $f \in \mathcal{A}$ is convex in U, if $f: U \to \mathbb{C}$ is univalent and $f(U)$ is a convex domain in \mathbb{C} . It is known that the function $f \in A$ is convex in U if and only if

$$
\operatorname{Re}\left(1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right)>0.
$$

We say that $f \in A$ is close-to-convex in U, if there is a convex function $q \in \mathcal{K}$ for which

$$
\operatorname{Re}\frac{f'(z)}{g'(z)} > 0, \ z \in U.
$$

Since if $g \in \mathcal{K}$ then $zg' \in S^*$, an equivalent definition of close-to-conexity is the following.

The function $f \in A$ is close-to-convex in U if there exist a starlike function $g \in S^*$ for which

$$
\operatorname{Re}\frac{zf'(z)}{g(z)}>0,\ z\in U.
$$

We denote by C the class of close-to-convex functions.

Let T denote a subclass of A consisting of functions f of the form

$$
f(z) = z - \sum_{j=2}^{\infty} a_j z^j,
$$
 (1)

where $a_j \geq 0$, $j = 2, 3, \dots$ and $z \in U$. A function $f \in T$ is called a function with negative coefficients. If $f \in T$ and f is univalent, the followings are equivalent [9]:

(i)
$$
\sum_{j=2}^{\infty} ja_j \le 1
$$
,

(ii) $f \in T$,

(iii) $f \in T^*$, where $T^* = T \cap S^*$.

In our paper we generalize the class of close-toconvex functions, for functions with negative coefficients, and we obtain some intresting results on this generalized class.

In 1973, Ruscheweyh and Sheil-Small [7] proved the Pólya-Schoenberg conjecture, namely if ϕ is convex and $f \in S^*$ or K, then $f * \phi$ also belong to S^* or K . In our paper we prove the analogue of this conjecture for the generalized class of close-to-convex functions.

c 2016 Published by "Petru Maior" University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2 Preliminaries

To prove our main results we need the following preliminary definitions and theorems.

Let

$$
f(z) = z - \sum_{j=2}^{\infty} a_j z^j
$$

and

$$
g(z) = z - \sum_{j=2}^{\infty} b_j z^j,
$$

then the Hadamard product or the convolutions of the functions f and q is defined by

$$
(f * g)(z) = z - \sum_{j=2}^{\infty} a_j b_j z^j = (g * f)(z).
$$

In 1908 Jackson introduced the Euler-Jackson qdifference oprator.

For $f \in \mathcal{A}$ of the form (1) and $0 \le q \le 1$, the q-derivative of the function f is defined by

$$
D_q f(z) = \frac{f(qz) - f(z)}{(q-1)z},
$$
 (2)

where $z \neq 0$ and $D_q f(0) = f'(0)$.

From (2) we can deduce that

$$
D_q f(z) = 1 - \sum_{j=2}^{\infty} \frac{1 - q^j}{1 - q} a_j z^{j-1},
$$

where $z \neq 0$.

We note with $[z_0, z_1, ..., z_n; f]$ the divided differences at a system of distinct points $z_0, z_1, ..., z_n$, where

$$
[z_0, z_1, ..., z_n; f] = \sum_{j=0}^n \frac{f(z_j)}{(z_j - z_0) \cdot ... \cdot (z_j - z_n)}.
$$

The *n*-th order q derivative of the function f is defined in [8] as follows:

$$
(D_q^n f)(z) = [n]_q [z, qz, ..., q^n z; f],
$$
 (3)

where $[n]_q = \frac{q^n - 1}{n}$ $\frac{1}{q-1}$.

The q-derivative have several intresting application in quantum mechanics and generally in physics.

Theorem 2.1. *[10] Let* $f : U_q \subseteq \mathbb{C} \rightarrow \mathbb{C}$ *be qderivable of order n, then*

$$
(D_q^n f)(z) = (q-1)^{-n} z^{-n} q^{-C_n^2}.
$$

$$
\sum_{j=0}^n \frac{[n]_q!}{[j]_q! [n-j]_q!} (-1)^j q^{C_j^2} f(q^{n-j} z).
$$

A generalization of the class of close-to-convex functions by D_q difference operator we can found in [8]. In followings are given some generalizations of the class of close-to-convex functions, in the case of functions with negative coefficients, using the q difference operator.

Definition 2.1. *A function* $f \in T$ *is said to be in the generalized class of close-to-convex functions of order* $γ$ *, denoted by* $UCC_q(γ)$ *, if*

$$
\operatorname{Re} \frac{z D_q f(z)}{g(z)} \ge \gamma,
$$

where $0 \leq \gamma < 1$ *and* $g \in T^*$ *.*

Remark 2.1. *If* $\gamma = 0$ *then* $UCC_q(0) = UCC_q$.

Definition 2.2. *A function* $f \in T$ *is said to be in the generalized class of close-to-convex functions of order* γ*, relative to a fixed function* g ∈ T ∗ *, denoted by* $UCC_q(g, \gamma)$ *, if*

$$
\operatorname{Re} \frac{z D_q f(z)}{g(z)} \ge \gamma,
$$

where $0 \leq \gamma < 1$ *.*

Definition 2.3. A function $f \in T$ is said to be in the $class UCC_q^n$, if

$$
\operatorname{Re}\frac{zD_q^nf(z)}{g(z)}>0,
$$

where $g \in T^*$ *.*

3 Main results

Theorem 3.1. *Let* $f(z) = z - \sum_{n=1}^{\infty}$ $\sum_{j=2} a_j z^j, a_j \geq 0, j \in$ $\{2, 3, ...\}$ *and* $0 \leq \gamma < 1$ *. If* $f \in UCC_q(\gamma)$, then there exist $g \in T^*$, $g(z) =$ $z - \sum_{i=1}^{\infty}$ $\sum_{j=2} b_j z^j$, such that

$$
\sum_{j=2}^{\infty} \left(\frac{1 - q^j}{1 - q} a_j - \gamma b_j \right) < 1 - \gamma. \tag{4}
$$

If

$$
\sum_{j=2}^{\infty} \frac{1 - q^j}{1 - q} a_j < 1 - \gamma,\tag{5}
$$

then $f \in UCC_q(\gamma)$ *. In the particular case when*

$$
\frac{1-q^j}{1-q}a_j \le b_j, \ j \in \{2,3,...\}
$$

the inequality (4) is necessary and sufficient condition for f to belongs to $UCC_a(\gamma)$ *.*

Proof. Let $f \in UCC_q(\gamma)$, then there exists $g \in T^*$, $g(z) = z - \sum_{n=1}^{\infty}$ $j=2$ $b_j z^j$ such that $\text{Re}\,\frac{zD_qf(z)}{g(z)}>\gamma,\,z\in U.$

If $z \in [0, 1)$, we obtain

$$
\frac{z - \sum_{j=2}^{\infty} \frac{1 - q^j}{1 - q} a_j z^j}{z - \sum_{j=2}^{\infty} b_j z^j} > \gamma.
$$
 (6)

We note that for $z \in [0, 1)$ we have $z - \sum_{n=1}^{\infty}$ $j=2$ $b_j z^j > 0,$ because $g \in T^*$ and in this case $\sum_{n=1}^{\infty}$ $j=2$ $jb_j \leq 1$, then

$$
\sum_{j=2}^{\infty} b_j < 1.
$$

 $j=2$
The relation (6) is equivalent to

$$
\sum_{j=2}^{\infty} \left(\frac{1 - q^j}{1 - q} a_j - \gamma b_j \right) z^{j-1} < 1 - \gamma.
$$

For (5) we chose $g(z) = z$. Then

$$
\gamma-\operatorname{Re}\Big(\frac{zD_qf(z)}{g(z)}-1\Big)<1
$$

is true if

$$
\gamma + |D_q f(z) - 1| < 1,
$$

but we have

$$
\gamma + |D_q f(z) - 1| \le \sum_{j=2}^{\infty} \left| \frac{1 - q^j}{1 - q} a_j \right| + \gamma
$$

$$
= \sum_{j=2}^{\infty} \frac{1 - q^j}{1 - q} a_j + \gamma.
$$

To prove the particular case, we suppose

$$
\frac{1-q^j}{1-q}a_j \geq b_j, \; j \in \{2,3,\ldots\}.
$$

Then we have

$$
\sum_{j=2}^{\infty} \left| b_j - \frac{1 - q^j}{1 - q} a_j \right| |z|^{j-1}
$$

$$
1 - \sum_{j=2}^{\infty} b_j |z|^{j-1}
$$

$$
\leq \gamma + \frac{\sum_{j=2}^{\infty} \left(\frac{1 - q^j}{1 - q} a_j - b_j \right)}{1 - \sum_{j=2}^{\infty} b_j}
$$

$$
= \frac{\gamma + \sum_{j=2}^{\infty} \left(\frac{1 - q^j}{1 - q} a_j - \gamma b_j \right)}{1 - \sum_{j=2}^{\infty} b_j} < 1,
$$

if we suppose that the inequality (4) is true.

Theorem 3.2. *Let* $f(z) = z - \sum_{n=1}^{\infty}$ $j=2$ $a_j z^j, g(z) = z \sum^{\infty}$ $j=2$ $b_j z^j, g \in T^*$, where $a_j, b_j \ge 0, j \in \{2, 3, ...\}$ and $\gamma \in [0, 1)$. If $f \in UCC_q(g,\gamma)$, then

$$
\sum_{j=2}^{\infty} \left(\frac{1 - q^j}{1 - q} a_j - \gamma b_j \right) < 1 - \gamma. \tag{7}
$$

If

$$
\sum_{j=2}^{\infty} \left[\frac{1-q^j}{1-q} a_j + (2-\gamma)b_j \right] < 1-\gamma,\qquad(8)
$$

then $f \in UCC_q(g, \gamma)$ *. In the particular case when*

$$
\frac{1-q^j}{1-q}a_j \le b_j, \ j \in \{2,3,..\},
$$

then (7) implies that $f \in UCC_q(g, \gamma)$ *.*

Remark 3.1. When
$$
f_2(z) = z - \frac{z^2}{1+q} \in
$$

\n
$$
UCC_q(g_2, \gamma), \text{ where } g_2(z) = z - \frac{z^2}{2} \in T^* \text{ we have}
$$
\n
$$
\text{Re } \frac{zD_q f_2(z)}{g_2(z)} = \text{Re } \frac{z(1-z)}{z(1-\frac{z}{2})} = 2 \text{Re } \frac{1-z}{2-z} > 0.
$$

But

$$
\sum_{j=2}^{\infty} \frac{1 - q^j}{1 - q} a_j + (2 - \gamma) b_j = 1 + \frac{2 - \gamma}{2} = 2 - \frac{\gamma}{2} \nless 1.
$$

This show that (8) is only a sufficies condition.

Because in [7] the authors proved that the convolution of a starlike and a convex function is starlike, we can give the following theorem.

Theorem 3.3. Let
$$
f(z) = z - \sum_{j=2}^{\infty} a_j z^j
$$
, $g(z) = z - \sum_{j=2}^{\infty} b_j z^j$ and let $\phi(z) = z - \sum_{j=2}^{\infty} c_j z^j$ convex in U ,
where $a_j, b_j, c_j \ge 0$, $j \in \{2, 3, ...\}$.
If $f \in UCC_q(g, \gamma)$, where $\frac{1-q^j}{1-q}a_j \le b_j$ for $j \in \{2, 3, ...\}$, then $f * \phi \in UCC_q(g, \gamma)$.

Proof. Let

$$
(f * \phi)(z) = z - \sum_{j=2}^{\infty} a_j c_j z^j.
$$

We know from Definition 2.2 that if $(f * \phi)(z) \in$ $UCC_q(g, \gamma)$, then

$$
\operatorname{Re} \frac{z D_q(f * \phi)(z)}{(g * \phi)(z)} > \gamma,
$$

32

 \Box

where $(g * \phi) \in T^*$ and $0 \leq \gamma < 1$. Suppose $f \in UCC_q(g, \gamma)$. Then by Theorem 3.2 we have

$$
\sum_{j=2}^{\infty} \left[\frac{1 - q^j}{1 - q} a_j - \gamma b_j \right] < 1 - \gamma. \tag{9}
$$

To finish our proof, we must to show

$$
\sum_{j=2}^{\infty}\Big[\frac{1-q^j}{1-q}a_jc_j-\gamma b_jc_j\Big]<1-\gamma.
$$

Since $\phi \in T$, the above inequality is equivalent to

$$
\sum_{j=2}^{\infty} |c_j| \left[\frac{1 - q^j}{1 - q} a_j - \gamma b_j \right] < 1 - \gamma. \tag{10}
$$

Because ϕ is convex, by the coefficient delimitation theorem for convex functions we have $|c_i| \leq 1$, for $j = 2, 3...$

Then from (10) we obtain

$$
\sum_{j=2}^{\infty} |c_j| \left[\frac{1 - q^j}{1 - q} a_j - \gamma b_j \right]
$$

$$
< \sum_{j=2}^{\infty} \left[\frac{1 - q^j}{1 - q} a_j - \gamma b_j \right] < 1 - \gamma,
$$

and the proof is done.

Theorem 3.4. Let
$$
f(z) = z - \sum_{j=2}^{\infty} a_j z^j
$$
, $g(z) = z - \sum_{j=2}^{\infty} b_j z^j \in T^*$ and

$$
F(z) = I_c f(z) = \frac{c+1}{z^c} \int_{0}^{z} f(t) t^{c-1} dt, c \in \mathbb{N}^*.
$$

If $f \in UCC_q(g, \gamma)$, where $\frac{1-q^j}{1-q^j}$ $\frac{1}{1-q}a_j$ ≤ b_j for $j \in$ ${2, 3, ...\}$ *, then* $F \in UCC_a(q, \gamma)$ *.*

Proof. Suppose $f \in UCC_q(q, \gamma)$. Then by Theorem 3.2 we have

$$
\sum_{j=2}^{\infty} \left[\frac{1-q^j}{1-q} a_j - \gamma b_j \right] < 1 - \gamma.
$$

We know that if f has the form (1) then

$$
F(z) = \frac{c+1}{z^c} \int_{0}^{z} f(t)t^{c-1} dt = z - \sum_{j=2}^{\infty} \frac{c+1}{c+j} a_j z^j = z - \sum_{j=2}^{\infty} c_j z^j.
$$

If the

$$
\sum_{j=2}^{\infty} \left[\frac{1-q^j}{1-q} \cdot \frac{c+1}{c+j} a_j - \gamma b_j \right] < 1 - \gamma
$$

inequality is true, then according to Theorem 3.2 we know that $F \in UCC_q(g, \gamma)$. Next we prove

$$
\frac{1-q^j}{1-q} \cdot \frac{c+1}{c+j} a_j - \gamma b_j
$$

$$
< \frac{1-q^j}{1-q} a_j - \gamma b_j, \text{ for } j \ge 2.
$$
 (11)

The inequality (11) is equivalent to

$$
\frac{1-q^j}{1-q}a_j\left(1-\frac{c+1}{c+j}\right) > 0,
$$

which is true for all $c \in \mathbb{N}^*$ and $j \geq 2$, and the proof is done. \Box

4 Conclusion

The class of close-to-convex functions has an important role in geometric function theory and it was introduced by W. Kaplan.

In the Definition 2.1 we have generalized the class of close-to-convex functions, using the q -difference operator. In the Definition 2.2 we have generalized the class of close-to-convex functions relative to a fixed function $g \in T^*$.

For this two generalized class of functions, in Theorem 3.1 and Theorem 3.2 we have proved several coefficient inequalities. Using these inequalities we have proved an analogue of the Pólya-Schoenberg conjecture, and finally we have showed the preserving propertie of the Bernardi integral operator defined on the $UCC_q(g, \gamma)$ class.

References

 \Box

- [1] Agrawal, S., Sahoo, S.K., A generalization of starlike functions of order α , arXiv: 1404.3988v2, 2015 - arxiv.org.
- [2] Aldawish, I., Darus, M. (2014), Starlikeness of q differential operator involving quantum calculus, Korean J. Math., Vol. 22, No. 4, pp. 699-709.
- [3] Kanas, S. and Răducanu, D. (2014), Some class of analytic functions related to conic domains, Math. Slovaca, Vol. 64, No. 5, pp. 1183-1196.
- [4] Mocanu, P. T., Bulboacă, T. and Sălăgean, G. Șt. (2006), Teoria Geometrică a Funcțiilor Univalente, Ed. a II-a, Casa Cărții de Știință, Cluj-Napoca, 460+9 pag., ISBN 973-686-959-8. (romanian only)
- [5] Noor, K. I. (2000), On close-to-convex functions of complex order, Soochow J. of Math., Vol. 26, No. 4, pp. 369-376.
- [6] Rosihan, M., Ravichandran, V., Uniformly convex and uniformly starlike functions, arXiv: 1106.4377v1, 2011 - arxiv.org.
- [7] Ruscheweyh, S. and Sheil-Small, T. (1973), Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv., Vol. 48, No. 1, pp. 119-135.
- [8] Sahoo, S.K. and Sharma, N.L. (2014), On a generalization of close-to-convex functions, Ann. Pol. Math., Vol. 113, No. 1, pp. 93-108.
- [9] Silverman, H. (1991), A survey with open problems on univalent functions whose coefficients are negative, Rocky Montain J. Math., Vol. 21, No. 3, pp. 1099-1125.
- [10] Sofonea, D.F. (2008), Some new properties of q-Calculus, Gen. Math., Vol 16., No. 1 , pp. 47-54.