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Abstract 

Entropy metrics are valuable tools for use in systems science and engineering. Both of 

domains are assumed to work with signals, to perform testing and evaluation tasks through 

specific signals. Entropy metrics indicate the degree of order/disorder in any given system, 

so they are capable to distinguish deterministic features from noise or chaos. The 

motivation of this paper is to present the main components and actual developments in 

entropy metrics used to analyze discrete time signals. The entropy metrics and 

measurements developed in this work try to find regularity in discrete time series in order 

to inspect them or predict future events.  
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1. Introduction 

The purpose of this paper is to identify how 

entropy metrics can provide information about the 

complexity of discrete time series, reviewing 

theoretical elements and current developments. This 

paper performs the study using different signals as 1/f 

noise, white noise, and long term heart rate variability 

(HRV) signals. Starting from Clausius’ first definition 

in thermodynamics through Shannon's entropy [1] of 

information in communication systems, a lot of 

another metrics have been developed lately [6], [9]. 

The present work introduces these lately 

developed metrics, the approximate, the sample and 

the multiscale entropies to discern between regularity 

and randomness in different test signals. 

The approximate entropy represents a simple 

index for the overall complexity and predictability of 

time series [2], quantifying the likelihood that runs of 

patterns, which are close, remain similar for 

subsequent incremental comparisons.  

The sample entropy improves the approximate 

entropy by excluding self-matches, quantifies the 

conditional probability that two sequences of m 

successive data points that are similar to each other 

(within a given tolerance r) will remain similar when 

one consecutive point is included [3], [8]. 

The multiscale entropy measurements differ from 

previous entropy techniques by including multiple 

time scales of measurement, computing the sample 

entropy at different scales [4], [5], [6], [10], [11]. 

2. Entropy metrics 

The approximate entropy (ApEn) was derived 

from the theory of the Kolmogorov–Sinai entropy 

[12] for signals that included both information and 

noise. Its definition is presented below (relation 1). 

     rrNrmApEn mm 1,,     (1) 

The parameter m is the distance between time 

series points to be compared, N is the length of the 

time series, r is the domain of similarity (or tolerance) 

and φ is the probability that points m distance apart 

would be within the distance r. The purpose for the 

similarity domain term, r, is to identify a range in 

which variations are to be considered similar. High 

values of approximate entropy indicate high 

irregularity and complexity in time-series data.  

The most important limitations of ApEn are that it 

requires noise-free stationary data, an inherent bias 

exists and self-matches are counted too. Also, it 

strongly depends on the discrete signal’s length and 

evaluates regularity on one scale only. 

The sample entropy (SampEn) which is an 

improved version of approximate entropy is defined 

as: 
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conditional probability that subseries of length m that 

match pointwise within a tolerance r also match at the 

next point. The semnifications of parameters are the 

same as in relation (1), the sign minus assures positive 

values [6]. The SampEn is estimated by the statistic 
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SampEn is more useful than the ApEn at 

identifying changes in the point-to-point variations in 

discrete time signals. It has limitations too, as 

stationary signal requirement; a higher pattern length 

requires an enormous number of data points and 

evaluates regularity on one scale only. A distance 

between two sequences as the absolute maximum 

difference between their scalar components, can be 

defined as follows: 

    kjxkixr mk   1,...0max     (4) 

The multiscale entropy (MsEn) is used to compute 

the corresponding sample entropy over a sequence of 

scale factors. For a one-dimensional time series, 

x={x1, x2, … , xN} the so-called coarse-grained time 

series y
(τ)

, can be constructed at a scale factor of τ, 

according to the following equation [5]: 
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The coarse-grained procedure is illustrated in fig. 1. 

  
Fig. 1: Schematic illustration of coarse-grained procedure 

 

As shown in fig. 1, the coarse-grained time series 

is divided into non-overlapping sequences of length τ, 

and the data points inside each sequence are averaged. 

The MsEn value is then defined as the entropy 

measurement of each coarse-grained time series.  
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By including multiple time scales of measurement, 

the MsEn allows to identify the time scales at which 

the change in complexity occurs.  

In the composit multiscale entropy (CmsEn) 

algorithm, the k-th coarse-grained time series for a 

scale factor of τ, yk
(τ)

={yk,1
(τ)

, yk,2
(τ)

, …, yk,p
(τ)

}is 

defined as: 

 








  




k
N

jxy
kj

ji

ijk 1,1,
1 1

11

)(

,      (7) 

In the Composite Multiscale Entropy (CmsEn) 

algorithm, at a scale factor of τ, the sample entropies 

of all coarse-grained time series are calculated and the 

CmsEn value is defined as the means of τ entropy 

values [12], [13].  
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The CmsEn procedure is presented on fig. 2, 

where are two and three coarse-grained time series 

obtained from the original sequence for scale factors 

of 2 and 3. 

  
 

Fig. 2: Schematic illustration of the CmsEn procedure 
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3. Entropy measurements results 

This work uses test signals in order to evaluate the 

different entropy metrics. The used signals are white 

noise, 1/f noise, and long-term heart rate variability 

signals. The evaluation is performed under Matlab 

environment, using Signal Processing Toolbox to 

calculate the entropy metrics The mentioned noise 

signals were developed and generated also in Matlab, 

the others are obtained from specific databases [7].  

The next figures present the used signals with their 

most important parameters (histograms, spectrum) 

 
Fig. 3: Noise test signals 

 

The 1/f noise is a largely used signal, its power 

spectral density is inversely proportional to the 

frequency of the signal. In in this work it was obtained 

by filtering random noise through a FIR filter that has 

a 1/f pass-band [14]. 

Figure 4 presents two heart rate variability signals 

with their main properties, histogram and spectrum. 

The signal were obtained from Physionet database [7]. 

 
Fig. 4: HRV test signals 

 

These signals were analyzed through entropy 

metrics and the previously mentioned parameters 

were calculated. In the case of approximate and 

sample entropy, usual the value for sensibility domain 

was chosen 0.2 times the standard deviation of the 

data [9] and computation were made for different 

embedding lengths as can be seen in figures 5,6,7. 

Figure 5 presents the obtained approximate 

entropy and the sample entropy for white and 1/f 

noise for different lengths of signal with embedding 

length of 2. 

 
 

Fig. 5: White and 1/f noise entropies vs length 

 

The corresponding entropies for HRV signals are 

presented on figure 6. The obtained values are smaller 

due to increased level of regularity.  

 

 
 

Fig. 6: HRV signal entropies vs signal length 

 

The highest value of approximate entropy and 

sample entropy indicates a highest degree of disorder, 

a more accentuate randomness. As it can be seen, the 

sample entropy offers a more accurate insight into the 

signal regularity. The multiscale and multiscale 

composite entropies are computed according to the 

algorithms presented in [5]. The obtained values are 

presented in figure 7 together to emphasize the 

obvious differences. Ew and Ef are the multiscale 

composite entropies for white noise and 1/f noise and 

E1 E2 are for HRV1 and HRV2 signals. The used 

lengths are 4096 (samples), the sample entropies for 

each time scale were computed with a threshold of 

0.15 times the standard deviation. 

 
Fig. 7: Composite multiscale entropies for time scales 2 to 8 

for the test signals 

At the multiscale algorithms the larger the scale 

factor is, the shorter the coarse-grained sequence is. 

Therefore, the variance of the entropy of the coarse-

grained series estimated by sampling entropy 

increases as a time scale factor increases. 
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4. Conclusions 

The effectiveness of the entropy metrics is 

evaluated through two generated noise signals and 

two real heart rate variability data set provided by 

Physionet database. The analysis of white noise, 1/f 

noise and two heart rate variability signals shows that 

the multiscale entropies provide a more accurate 

estimation of regularity, self-repeatability than the 

approximate and sample entropies. These entropy 

measurements depend on the length of time-series. In 

case of the multiscale statistics each coarse-grained 

time series is equal to that of the original time series 

divided by the scale factor, τ, then the variance of 

entropy values grows as the length of coarse-grained 

time series is reduced. These entropy metrics 

computations need a lot of computing resources due 

to the signal length, the multiscale entropy metrics 

bring better results at shorter sequences. 
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