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ABSTRACT

We solve a linear Cauchy problem with discontinuous perturbation two ways, by solv-
ing continuous Cauchy problems successively and by using Laplace transform. An
example is given when the last one cannot be used any longer, still the Cauchy prob-
lems are solvable and the Cauchy problem with discontinuous perturbation as well.
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1 Typical Cauchy problem

Laplace transform became common knowledge1

with practical application especially in engineering
(electronics; the example of the harmonic oscillator
y′′ + ω2y = f(x) is widely spread). It has the follow-
ing technical explanation: a "signal" y is sent into an
"amplifier", and get an "output signal" Y. In the present
note we motivate its use a bit more. The theoretical
part, treated with examples, exercises, and theorems,
can be found for example in [2, 4, 9, 10, 12, 13, 14].
In particular, for the automatic systems theory one can
consult [3].

This powerful mathematical tool has been used
over the years in different studies, like generalizations
on arbitrary time scales [1, 8], computing fundamen-
tal solutions for certain PDEs [5, 6], integral stability
of certain linear processes [7], the abstract wave equa-
tion [11], Hyers-Ulam stability of a linear differential
equation of the nth order [15].

Our purpose is to give an alternative to introduce
the Laplace transform in order to have a natural mean-
ing.

Let us consider the following typical Cauchy prob-
lem

(C)

{
y′(x)− y(x) = f(x)

y(0) = 1,

1see https : //en.wikipedia.org/wiki/Laplace_transform

approximatively 1.420.000 results generated by https :
//www.google.ro/

where f is a given (not necessarily continuous) func-
tion.2 3

In order to make a comparison between two ap-
proaches, i.e. by solving successively Cauchy prob-
lems and by using Laplace transform, we firstly chose

f(x) =

{
1, x ∈ [0, 1) = I

0, x ∈ [1,+∞) = J.
Since f is not con-

tinuous, the problem does not have a classic solution,
i.e. of the class C1. On the interval I the problem

(CI)

{
y′ − y = f

y(0) = 1,

has the classic solution yI(x) = 2 · ex − 1. We go on
to solve the problem on J

(CJ)

{
y′ − y = f

y(1) = yI(1−) = 2e− 1,

finding the classic solution yJ(x) = (2− e−1) · ex.

2The solution of (C) is given by

y = y0 + y0 ∗ f,

where y0 = exp(·) is the solution of the homogeneous equation
and ” ∗ ” is the convolution operation.

3Let f ∈ D′(0,+∞) be a given function, ak ∈ C∞[0,+∞),
k ∈ {1, ..., n}, and L =

∑n
k=1 ak · Dk a linear operator. It is

known that the solution of the equation

Ly = f

is y = E ∗ f, with E the fundamental solution. More, if Ly0 = 0,
then y0 + y is also solution.
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Then, the generalized solution of (C) is

y(x) =

{
yI(x), x ∈ I
yJ(x), x ∈ J,

(1)

with x = 1 angular point y′(1−) = 2e,
y′(1+) = 2e− 1.

The Laplace transform is defined as y 7→ L(y) =
Y,

L(y)(s) =
∫ ∞
0

e−sx · y(x) dx not.
= Y (s),

if the integral exists, for a function y : R → R that
satisfies the following conditions:

1◦ y(x) = 0, ∀x < 0;

2◦ on any interval [0, N ], y is continuous or has at
most finitely number of discontinuity points (it is
piecewise continuous);

3◦ there exists M > 0 and σ ∈ R such that

|y(x)| ≤M · eσx,∀x > N

(i.e., y has at most exponential growth).

From the usual computation one has L(eax)(s) =
1
s−a , for a ∈ R,4 therefore the original Laplace eax =

L−1
(

1

s− a

)
; also, L(y′)(s) = s · Y (s)− y(0).

Applied L to the equation in (C), by its linearity,
one obtains

s · Y (s)− 1− Y (s) = −1

s
· (e−s − 1);

thus

Y (s) = − 1

s · (s− 1)
· (e−s − 1) +

1

s− 1
.

So, the original Laplace is given by

y(x) = L−1(Y (s))

= L−1
(
− 1

s · (s− 1)
· (e−s − 1) +

1

s− 1

)
= −L−1

(
1

s · (s− 1)
· e−s

)
+L−1

(
1

s · (s− 1)

)
+ L−1

(
1

s− 1

)
. (2)

We apply the following result.

4for a = 0 see https :
//www.khanacademy.org/math/differential −
equations/laplace − transform/laplace − transform −
tutorial/v/laplace− transform− 1)

Theorem 1. ([13], Theorem 18) If Ỹ is a Laplace
transform and ỹ is its original, then

L−1(e−as · Ỹ (s)) =

{
ỹ(x− a), x > a > 0

0, x < a

= ỹ(x− a) · u(x− a), (3)

where u(·) is the unit step function.

In particular, for Ỹ (s) =
1

s · (s− 1)
=

1

s− 1
− 1

s
,

by (3) one has

L−1
(

1

s · (s− 1)
· e−s

)
=

{
ỹ(x− 1), x > 1

0, x < 1

=

{
ex−1 − 1, x > 1

0, x < 1.

Consequently, from (2) one obtains

y(x) = L−1(Y (s))

= −

{
ex−1 − 1, x > 1

0, x < 1
+ ex − 1 + ex

=

{
(2− e−1) · ex, x > 1

2 · ex − 1, x < 1,

that is the solution given in (1) almost everywhere, i.e.
except x = 1.

Similarly, for the harmonic oscillator we proceed
with basic computations.

Example 1. Let ω > 0, f(x) ={
1, x ∈ [0, 2π/ω) = I1

0, x ∈ [2π/ω,+∞) = I2,
and the following

Cauchy problem

(Cω)


y′′(x) + ω2y(x) = f(x)

y(0) = 0

y′(0) = 1.

The problem on I1 is (CI1)


y′′ + ω2y = 1

y(0) = 0

y′(0) = 1,

and

has solution yI1(x) =
1
ω2 · (1− cosωx) + 1

ω · sinωx.
On I2 it becomes

(CI2)


y′′ + ω2y = 0

y(2π/ω) = yI1(2π/ω−) = 0

y′(2π/ω) = y′I1(2π/ω−) = 1,

and has solution yI2(x) =
1
ω · sinωx.

Then, the generalized solution of (Cω) is

y(x) =

{
yI1(x), x ∈ I1
yI2(x), x ∈ I2.

(4)
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AppliedL to the equation in (Cω), one hasL(y′′)+
ω2L(y) = L(f) thus obtains s2 ·Y (s)−1+ω2Y (s) =
L(f), and so Y (s) = 1

s2+ω2 ·[L(f)+1]. SinceL(f) =
− 1
s · (e

− 2π
ω s − 1) it follows that the original Laplace

is given by

y(x) = L−1(Y (s))

= L−1
(
− 1

s · (s2 + ω2)
· (e− 2π

ω s − 1)

+
1

s2 + ω2

)
= −L−1

(
1

s · (s2 + ω2)
· e− 2π

ω s

)
+L−1

(
1

s · (s2 + ω2)

)
+ L−1

(
1

s2 + ω2

)
=

{
0, x ∈ I1
− 1
ω2 · (1− cosωx), x ∈ I2

+
1

ω2
· (1− cosωx) +

1

ω
· sinωx. (5)

Here we used the method given in [13].5 The solu-
tion given in (5) is a.e. with the one from (4).

2 Some illustrative examples

By its definition Laplace transform cannot be used
for any linear Cauchy problem.

Observation 1. The solution of the Cauchy prob-

lem

{
y′ − y = (2x− 1) · ex2

y(0) = 1,
is y(x) = ex

2

, x ∈

[0,+∞) and can be obtained by Lagrange’s method.
The Laplace transform cannot be used, obviously be-
cause of the growth condition 3◦, the function f(x) =
(2x − 1) · ex2

being not a Laplace original. Any-
way, suppose that there exist M > 0 and σ ∈ R
such that |2x − 1| · ex2 ≤ M · eσx,∀x > N. Take
x0 := |σ|+N +M + 1 > N, that is large enough to
get the contradiction.

In general, let I ⊆ R, x0 ∈ I, and (Ik)
∞
k=0 a parti-

tion of I, Ik = [xk, xk+1). Let L =
∑n
k=1 ak · Dk

be a linear operator, ak ∈ R, y0j , j ∈ {0, ..., n −
1} be given. A solution of the Cauchy problem

(C)

{
L(y) = f

y(j)(x0) = y0j ,
j ∈ {0, ..., n − 1}, can

be obtained by solving successively Cauchy problems

5Since 1
s·(s2+ω2)

= 1
ω2 ·

(
1
s
− s

s2+ω2

)
, from pg. 108 we get

L(cosωx) + i · L(sinωx) = L(eiωx)

=

∫ ∞
0

e−sx · eiωx dx =
1

−s+ iω
· e−x(s−iω)

∣∣∞
0

=
1

s− i · ω
=

s+ i · ω
s2 + ω2

,

hence L(cosωx) = s
s2+ω2 and L(sinωx) = ω

s2+ω2 .

(CIk)

{
L(y) = f |Ik
y(j)(xk) = y

(j)
Ik

(xk−),
j ∈ {0, ..., n−1},

or by using the Laplace transform, when it is possible.
In the following we exemplify ones more.

Example 2. Let n ∈ N be fixed and Ik = [k, k + 1[,
0 ≤ k ≤ n. Let us consider in (C) the function

f(x) = −x+ k + 1, x ∈ ∪nk=0Ik.

Solving Cauchy problem on I0 = [0, 1[ we get the
classic solution y0(x) = ex+x. We go on to solve the
problem on Ik, successively for k ∈ {1, ..., n}

(CIk)

{
y′ − y = f(x)

y(k) = yIk(k−),

finding the classic solution yIk(x) =
∑k
i=0 e

−i · ex +
x− k. Then, the generalized solution of (C) is

y(x) = yIk(x), x ∈ ∪nk=0Ik, (6)

with x = k angular points y′(k−) =
∑k−1
i=0 e

−i · ek+
1, y′(k+) =

∑k
i=0 e

−i · ek + 1.
Via Laplace transform, one obtains s · Y (s)− 1−

Y (s) = L(f)(s) thus

Y (s) =
1

s− 1
+

1

s− 1
· L(f)(s).

So, the original Laplace is given by

y(x) = L−1(Y (s)) = L−1
(

1

s− 1

+
1

s− 1
·
n∑
k=0

∫ k+1

k

e−sx · (−x+ k + 1) dx

)
= ex

+
n∑
k=0

L−1
[(
− 1

s
− 1

s2
+

1

s− 1

)
· e−(k+1)s

+
1

s2
· e−ks

]
= ex +

n∑
k=0

[
(−1− x+ ex) · u(x− k − 1)

+x · u(x− k)
]
. (7)

The solution given in (6) is a.e. with the one from
(7).

The next example traces the known line of the
Laplace transform.

Example 3. Let Ik =] 1
k+1 ,

1
k ], k ∈ N∗ = N\{0}. Let

us consider the Cauchy problem

(C1)

{
y′ − y = f(x)

y(1) = 0,
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where f(x) = 1
k , x ∈

⋃
k∈N∗ Ik =]0, 1]. Since∫

[0,1]
|f(x)| dx =

∑∞
k=1

1
k2 ·

1
k+1 = π2

6 − 1 < +∞
we have f ∈ L1[0, 1].

On I1 =]1/2, 1] we get the classic solution y1(x) =
−e−1 · ex − 1. We go on to solve the problem on Ik,
successively for k ∈ {2, 3, ...}

(CIk)

{
y′ − y = f(x)

y(1/k) = yIk(1/k+),

finding the classic solution yIk(x) = ex ·
[
e−1 −∑k

i=2
1

i(i−1) · e
−1/i] − 1

k . Then, the generalized so-
lution of (C1) is

y(x) = ex ·
[
e−1 −

∞∑
i=1

1

i(i+ 1)
· e

−1
i+1

]
, x ∈ [0, 1],

(8)
with x = 1/k angular points y′(1/k−) =

e1/k ·
[
e−1 −

∑k
i=2

1
i(i−1) · e

−1/i], y′(1/k+) =

e1/(k+1) ·
[
e−1 −

∑k+1
i=2

1
i(i−1) · e

−1/i].
The Laplace transform cannot be applied because

of 2◦, the set of discontinuity points is not finite but it
is Lebesgue negligible.

3 Conclusions and future work

The previous example implies the role of Lebesgue
integrability and Fourier transform.

Anyway, our point is that the Laplace transform, as
a mathematical tool, should be introduced inductively
instead of being defined before all.

We are going to implement the present approach to
a computer algebra system.
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