REMARKS ON A GENERALIZATION OF A QUESTION RAISED BY PÁL ERDŐS CONCERNING A GEOMETRIC INEQUALITY IN ACUTE TRIANGLES II

Béla FINTA
"Petru Maior" University of Tîrgu Mureş
Nicolae Iorga Street, no.1, 540088, Tîrgu Mureş, Romania
e-mail: fintab@science.upm.ro

Abstract

The purpose of this paper is to give a negative answer to a possible generalization of an open question raised by Pál Erdös, concerning an inequality in acute triangles. We prove here that from $a<b<c$ does not follow $a^{2 k+1}+\left(l_{a}\right)^{2 k+1}<b^{2 k+1}+l_{b}^{2 k+1}<$ $c^{2 k+1}+l_{c}^{2 k+1}$ in every acute triangle $A B C$, nor the opposite chain of inequalities, where $k \in \mathbb{N}, k \geq 2$, and a,b, cdenotes the length of the triangles sites, while l_{a}, l_{b}, l_{c} denotes the length of the interior angle bisectors, as usual. We achieve this by constructing effectively two counterexamples, one for each type of inequalities.

Keywords: geometrical inequalities, acute triangle, interior bisectrices

1 Introduction

Let us consider the acute triangle ABC with sides $a=$ $B C, b=A C$ and $c=A B$. In [1] appeared the following open question due to Pál Erdős: "if ABC is an acute triangle such that $a<b<c$ then $a+l_{a}<b+l_{b}<$ $c+l_{c}$ ", where l_{a}, l_{b}, l_{c} means the length of the interior bisectrices corresponding to the sides BC, AC and AB , respectively.

In [2] Mihály Bencze proposed the following open question, which is a generalization of the problem of Pál Erdős: "determine all points $M \in \operatorname{Int}(A B C)$, for which in case of $B C<C A<A B$ we have $C B+$ $A A^{\prime}<C A+B B^{\prime}<A B+C C^{\prime}$, where $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ is the intersection of $\mathrm{AM}, \mathrm{BM}, \mathrm{CM}$ with sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}{ }^{\prime}$. Here with $\operatorname{Int}(A B C)$ we denote the interior points of the triangle ABC .
If we try for "usual" acute triangles ABC , we can verify the validity of the Erdős inequality. But in [3] we realized to obtain an acute triangle for which the Erdős inequality is false: let ABC be such that $c=10+\epsilon, b=10$ and $a=1$, where $\epsilon>0$ is a "very small" positive quantity. Using the trigonomet-
rical way combined with some elementary properties from algebra and mathematical analysis we showed that for this "extreme" acute triangle from $a<b<c$ results $c+l_{c}<b+l_{b}$.

In [4] József Sándor proved some new geometrical inequalities using in the open question of Pál Erdős instead of bisectrices altitudes and medians.

In [5] Károly Dáné and Csaba Ignát studied the open question of Mihály Bencze using the computer.

In connection with Erdős's problem we formulated the following open question: "if ABC is an acute triangle such that $a<b<c$ then $a^{2}+l_{a}^{2}<b^{2}+l_{b}^{2}<c^{2}+l_{c}^{2 \prime \prime}$. In [6] we proved the validity of this statement.

At the same time we formulated another new open question: "if ABC is an acute triangle such that $a<$ $b<c$ then $a^{4}+l_{a}^{4}<b^{4}+l_{b}^{4}<c^{4}+l_{c}^{4}$. . In [7] we realized to find two acute triangles ABC such that in the first triangle from $a<b<c(b=a+\epsilon, c=a+2 \epsilon$ with $\epsilon>0$ a small positive quantity) we obtained $a^{4}+l_{a}^{4}<$ $b^{4}+l_{b}^{4}$, but in the second triangle from $a<b<c$ ($b=a+\epsilon, c=a \sqrt{2}$ with $\epsilon>0$ a small positive quantity) we deduced $a^{4}+l_{a}^{4}>b^{4}+l_{b}^{4}$. So the answer
to our question is negative.
We can formulate the following more general open question using the problem of Pál Erdős: "if ABC is an acute triangle from $a<b<c$ results $a^{\alpha}+l_{a}^{\alpha}<$ $b^{\alpha}+l_{b}^{\alpha}<c^{\alpha}+l_{c}^{\alpha}$, where $\alpha \in \mathbb{R}$. We mention, that this property is not obvious, because from $a<b<c$ results $l_{a}>l_{b}>l_{c}$. If $\alpha=0$, then is immediately that our problem is false.
In [8] we proved for $\alpha=2 k \in \mathbb{N}, k \in \mathbb{N}, k \geq 2$ even natural number that the above inequality is not true in every acute triangle ABC , nor the opposite chain of inequalities.

2 Main part

The purpose of this paper is to study this open question for $\alpha=2 k+1, k \in \mathbb{N}$ odd natural number.

Proposition 1. There exist acute triangles $A B C$ with $a<b<c$, such that for these triangles we have $a^{2 k+1}+\left(l_{a}\right)^{2 k+1}<b^{2 k+1}+\left(l_{b}\right)^{2 k+1}$ for every odd natural number $2 k+1, k \in \mathbb{N}$.

Proof. We have the following sequence of equivalent inequalities: $a^{2 k+1}+\left(l_{a}\right)^{2 k+1}<b^{2 k+1}+\left(l_{b}\right)^{2 k+1} \Leftrightarrow$ $\left(l_{a}\right)^{2 k+1}-\left(l_{b}\right)^{2 k+1}<b^{2 k+1}-a^{2 k+1} \Leftrightarrow\left(l_{a}-l_{b}\right)$. $\left[\left(l_{a}\right)^{2 k}+\left(l_{a}\right)^{2 k-1} \cdot l_{b}+\cdots+l_{a} \cdot\left(l_{b}\right)^{2 k-1}+\left(l_{b}\right)^{2 k}\right]<$ $(b-a) \cdot\left(b^{2 k}+b^{2 k-1} \cdot a+\cdots+b \cdot a^{2 k-1}+a^{2 k}\right) \Leftrightarrow$ $\frac{\left(l_{a}\right)^{2}-\left(l_{b}\right)^{2}}{l_{a}+l_{b}} \cdot\left[\left(l_{a}\right)^{2 k}+\left(l_{a}\right)^{2 k-1} \cdot l_{b}+\cdots+l_{a} \cdot\left(l_{b}\right)^{2 k-1}+\right.$ $\left.\left(l_{b}\right)^{2 k}\right]<(b-a) \cdot\left(b^{2 k}+b^{2 k-1} \cdot a+\cdots+b \cdot a^{2 k-1}+a^{2 k}\right)$.

But $l_{a}^{2}=\frac{b c \cdot\left[(b+c)^{2}-a^{2}\right]}{(b+c)^{2}}$ and $l_{b}^{2}=\frac{a c \cdot\left[(a+c)^{2}-b^{2}\right]}{(a+c)^{2}}$ so $l_{a}^{2}-l_{b}^{2}=b c-\frac{a^{2} b c}{(b+c)^{2}}-a c+\frac{a b^{2} c}{(a+c)^{2}}=c \cdot(b-$ $a)+a b c \cdot\left[\frac{b}{(a+c)^{2}}-\frac{a}{(b+c)^{2}}\right]=c \cdot(b-a)+a b c$. $\frac{(b-a) \cdot\left[\left(b^{2}+b a+a^{2}\right)+2 c(b+a)+c^{2}\right]}{(a+c)^{2} \cdot(b+c)^{2}}=(b-a) \cdot[c+a b c$. $\left.\frac{b^{2}+b a+a^{2}+2 c(b+a)+c^{2}}{(a+c)^{2} \cdot(b+c)^{2}}\right]$.
This means, that $a^{2 k+1}+\left(l_{a}\right)^{2 k+1}<b^{2 k+1}+$ $\left(l_{b}\right)^{2 k+1} \Leftrightarrow \frac{1}{l_{a}+l_{b}} \cdot\left[c+a b c \cdot \frac{b^{2}+b a+a^{2}+2 c(b+a)+c^{2}}{(a+c)^{2} \cdot(b+c)^{2}}\right]$. $\left[\left(l_{a}\right)^{2 k}+\left(l_{a}\right)^{2 k-1} \cdot l_{b}+\cdots+l_{a} \cdot\left(l_{b}\right)^{2 k-1}+\left(l_{b}\right)^{2 k}\right]<$ $b^{2 k}+b^{2 k-1} \cdot a+\cdots+b \cdot a^{2 k-1}+a^{2 k}$.

At the first we choose the acute triangle ABC , such that $b=a+\epsilon$ and $c=a+2 \epsilon$, where $\epsilon>0$ is a small positive quantity. Then $\lim _{\epsilon \rightarrow 0}\left(l_{a}\right)^{2}=\lim _{\epsilon \rightarrow 0} \frac{b c \cdot\left[(b+c)^{2}-a^{2}\right]}{(b+c)^{2}}=$

[^0]$\lim _{\epsilon \rightarrow 0} \frac{(a+\epsilon)(a+2 \epsilon) \cdot\left[(a+\epsilon+a+2 \epsilon)^{2}-a^{2}\right]}{(a+\epsilon+a+2 \epsilon)^{2}} \quad=\quad \frac{3 a^{2}}{4}$,
$\lim _{\epsilon \rightarrow 0} l_{a}=\frac{\sqrt{3} a}{2}$,
$\lim _{\epsilon \rightarrow 0}\left(l_{b}\right)^{2}=\lim _{\epsilon \rightarrow 0} \frac{a c \cdot\left[(a+c)^{2}-b^{2}\right]}{(a+c)^{2}}=$ $\lim _{\epsilon \rightarrow 0} \frac{a \cdot(a+2 \epsilon) \cdot\left[(a+a+2 \epsilon)^{2}-(a+\epsilon)^{2}\right]}{(a+a+2 \epsilon)^{2}}=$ $\frac{3 a^{2}}{4}, \lim _{\epsilon \rightarrow 0} l_{b}=\frac{\sqrt{3} a}{2}, \lim _{\epsilon \rightarrow 0} b=\lim _{\epsilon \rightarrow 0}(a+\epsilon)=a$, and $\lim _{\epsilon \rightarrow 0}\left[c+a b c \cdot \frac{b^{2}+b a+a^{2}+2 c(b+a)+c^{2}}{(a+c)^{2} \cdot(b+c)^{2}}\right]=$ $\lim _{\epsilon \rightarrow 0}[(a+2 \epsilon)+a \cdot(a+\epsilon) \cdot(a+2 \epsilon)$. $\left.\frac{(a+\epsilon)^{2}+(a+\epsilon) \cdot a+a^{2}+2 \cdot(a+2 \epsilon) \cdot(a+\epsilon+a)+(a+2 \epsilon)^{2}}{(a+a+2 \epsilon)^{2} \cdot(a+\epsilon+a+2 \epsilon)^{2}}\right]=\frac{3 a}{2}$.

This means, that $\lim _{\epsilon \rightarrow 0} \frac{1}{l_{a}+l_{b}} \cdot[c+a b c$. $\left.\frac{b^{2}+b a+a^{2}+2 c(b+a)+c^{2}}{(a+c)^{2} \cdot(b+c)^{2}}\right] \cdot\left[\left(l_{a}\right)^{2 k}+\left(l_{a}\right)^{2 k-1} \cdot l_{b}+\cdots+l_{a}\right.$. $\left.\left(l_{b}\right)^{2 k-1}+\left(l_{b}\right)^{2 k}\right] \leq \lim _{\epsilon \rightarrow 0}\left(b^{2 k}+b^{2 k-1} \cdot a+\cdots+b\right.$. $\left.a^{2 k-1}+a^{2 k}\right)$, i.e. $\frac{1}{\frac{\sqrt{3} a}{2}+\frac{\sqrt{3} a}{2}} \cdot \frac{3 a}{2} \cdot\left(\frac{\sqrt{3} a}{2}\right)^{2 k} \cdot(2 k+1) \leq$ $a^{2 k} \cdot(2 k+1)$, i.e. $\left(\frac{\sqrt{3}}{2}\right)^{2 k+1} \leq 1$.

We can see immediately that the inequality $\left(\frac{\sqrt{3}}{2}\right)^{2 k+1}<1$ is true for all $k \in \mathbb{N}$. Using the definition of the limit we can conclude, that there exists a small positive real number $\epsilon_{0}>0$ such that for the triangle $A_{0} B_{0} C_{0}$ with $B_{0} C_{0}=a, A_{0} C_{0}=$ $b=a+\epsilon_{0}$ and $A_{0} B_{0}=c=a+2 \epsilon_{0}$ we obtain $a^{2 k+1}+\left(l_{a}\right)^{2 k+1}<b^{2 k+1}+\left(l_{b}\right)^{2 k+1}$ for every odd natural number $2 k+1, k \in \mathbb{N}$.

Proposition 2. There exist acute triangles $A B C$ with $a<b<c$, such that for these triangles we have $a^{2 k+1}+\left(l_{a}\right)^{2 k+1}>b^{2 k+1}+\left(l_{b}\right)^{2 k+1}$ for every odd natural number $2 k+1, k \in \mathbb{N}-\{0\}$.

Proof. Using the above presented sequence of ideas we get similarly, that $a^{2 k+1}+\left(l_{a}\right)^{2 k+1}>b^{2 k+1}+$ $\left(l_{b}\right)^{2 k+1} \Leftrightarrow \frac{1}{l_{a}+l_{b}} \cdot\left[c+a b c \cdot \frac{b^{2}+b a+a^{2}+2 c(b+a)+c^{2}}{(a+c)^{2} \cdot(b+c)^{2}}\right]$. $\left[\left(l_{a}\right)^{2 k}+\left(l_{a}\right)^{2 k-1} \cdot l_{b}+\cdots+l_{a} \cdot\left(l_{b}\right)^{2 k-1}+\left(l_{b}\right)^{2 k}\right]>$ $b^{2 k}+b^{2 k-1} \cdot a+\cdots+b \cdot a^{2 k-1}+a^{2 k}$.

At the second we choose the acute triangle ABC , such that $b=a+\epsilon$ and $c=a \sqrt{2}$, where $\epsilon>0$ is a small positive quantity. Then $\lim _{\epsilon \rightarrow 0}\left(l_{a}\right)^{2}=\lim _{\epsilon \rightarrow 0} \frac{b c \cdot\left[(b+c)^{2}-a^{2}\right]}{(b+c)^{2}}=$ $\lim _{\epsilon \rightarrow 0} \frac{(a+\epsilon) \cdot a \sqrt{2} \cdot\left[(a+\epsilon+a \sqrt{2})^{2}-a^{2}\right]}{(a+\epsilon+a \sqrt{2})^{2}}=(4-2 \sqrt{2}) \cdot a^{2}$, $\lim _{\epsilon \rightarrow 0} l_{a}=\sqrt{4-2 \sqrt{2}} \cdot a$,

$$
\lim _{\epsilon \rightarrow 0}\left(l_{b}\right)^{2}=\quad \lim _{\epsilon \rightarrow 0} \frac{a c \cdot\left[(a+c)^{2}-b^{2}\right]}{(a+c)^{2}}=
$$

$$
\lim _{\epsilon \rightarrow 0} \frac{a \cdot a \sqrt{2} \cdot\left[(a+a \sqrt{2})^{2}-(a+\epsilon)^{2}\right]}{(a+a \sqrt{2})^{2}}=(4-2 \sqrt{2}) \cdot a^{2}
$$

$\lim _{\epsilon \rightarrow 0} l_{b}=\sqrt{4-2 \sqrt{2}} \cdot a, \lim _{\epsilon \rightarrow 0} b=$ $\lim _{\epsilon \rightarrow 0}(a+\epsilon)=a$, and $\lim _{\epsilon \rightarrow 0}[c+a b c$. $\left.\frac{b^{2}+b a+a^{2}+2 c(b+a)+c^{2}}{(a+c)^{2} \cdot(b+c)^{2}}\right]=\lim _{\epsilon \rightarrow 0}[(a \sqrt{2})+a \cdot(a+\epsilon) \cdot$
$\left.(a \sqrt{2}) \cdot \frac{(a+\epsilon)^{2}+(a+\epsilon) \cdot a+a^{2}+2 \cdot(a \sqrt{2}) \cdot(a+\epsilon+a)+(a \sqrt{2})^{2}}{(a+a \sqrt{2})^{2} \cdot(a+\epsilon+a \sqrt{2})^{2}}\right]=$ $(16-10 \sqrt{2}) \cdot a$.
This means, that $\lim _{\epsilon \rightarrow 0} \frac{1}{l_{a}+l_{b}} \cdot[c+a b c \cdot$ $\left.\frac{b^{2}+b a+a^{2}+2 c(b+a)+c^{2}}{(a+c)^{2} \cdot(b+c)^{2}}\right] \cdot\left[\left(l_{a}\right)^{2 k}+\left(l_{a}\right)^{2 k-1} \cdot l_{b}+\cdots+l_{a}\right.$. $\left.\left(l_{b}\right)^{2 k-1}+\left(l_{b}\right)^{2 k}\right] \geq \lim _{\epsilon \rightarrow 0}\left(b^{2 k}+b^{2 k-1} \cdot a+\cdots+b\right.$. $\left.a^{2 k-1}+a^{2 k}\right)$, i.e. $\frac{1}{\sqrt{4-2 \sqrt{2}} \cdot a+\sqrt{4-2 \sqrt{2}} \cdot a} \cdot(16-10 \sqrt{2})$. $a \cdot(\sqrt{4-2 \sqrt{2}} \cdot a)^{2 k} \cdot(2 k+1) \geq a^{2 k} \cdot(2 k+1)$, i.e. $(8-5 \sqrt{2}) \cdot(\sqrt{4-2 \sqrt{2}})^{2 k-1} \geq 1$. But for $k \geq 1$ we have $(8-5 \sqrt{2}) \cdot(\sqrt{4-2 \sqrt{2}})^{2 k-1} \geq(8-5 \sqrt{2})$. $\sqrt{4-2 \sqrt{2}}>1$.
So the inequality $(8-5 \sqrt{2}) \cdot(\sqrt{4-2 \sqrt{2}})^{2 k-1}>1$ is true for all $k \in \mathbb{N}-\{0\}$. Using the definition of the limit we can conclude, that there exists a small positive real number $\epsilon_{1}>0$ such that for the triangle $A_{1} B_{1} C_{1}$ with $B_{1} C_{1}=a, A_{1} C_{1}=b=a+\epsilon_{1}$ and $A_{1} B_{1}=c=a \sqrt{2}$ we obtain $a^{2 k+1}+\left(l_{a}\right)^{2 k+1}>b^{2 k+1}+\left(l_{b}\right)^{2 k+1}$ for every odd natural number $2 k+1, k \in \mathbb{N}-\{0\}$.

3 Discussion and conclusion

Conclusion Proposition 1 and 2 show that using the usual notations for the length of sides and the length of the interior angle bisectors of an acute triangle, if we suppose $a<b<c$ then does not result $a^{2 k+1}+$ $\left(l_{a}\right)^{2 k+1}<b^{2 k+1}+l_{b}^{2 k+1}<c^{2 k+1}+l_{c}^{2 k+1}$, nor the opposite chain of the inequalities for any odd values greater than 1 of the exponents.

References

[1] Open Question OQ.14, Mathematical Magazine Octogon, Vol. 3, No. 1, 1995, pp. 54, Braşov, Romania
[2] Open Question OQ.27, Mathematical Magazine Octogon, Vol. 3, No. 2, 1995, pp. 64, Braşov, Romania
[3] Béla Finta, Solution for an Elementary Open Question of Pál Erdős, Mathematical Magazine Octogon, Vol. 4, No. 1, 1996, pp. 74-79, Braşov, Romania
[4] József Sándor, On Some New Geometric Inequalities, Mathematical Magazine Octogon, Vol. 5, No. 2, 1997, pp. 66-69, Braşov, Romania
[5] Károly Dáné, Csaba Ignát, On the Open Question of P. Erdős and M. Bencze, Mathematical Magazine Octogon, Vol. 6, No. 1, 1998, pp. 73-77, Braşov, Romania
[6] Béla Finta, A New Solved Question in Connection to a Problem of Pál Erdős, Proceedings of the 3rd Conference on the History of Mathematics and Teaching of Mathematics, University of Miskolc, May 21-23, 2004, pp. 56-60, Miskolc, Hungary
[7] Béla Finta, A New Solved Question in Connection to a Problem of Pál Erdős II, Didactica Matematicii, "Babeş-Bolyai" University, Vol. 24, 2006, pp. 65-70, Cluj-Napoca, Romania
[8] Béla Finta, Some Geometrical Inequalities in Acute Triangle, Lucrările celei de a III-a Conferințe anuale a Societăţii de Ştiinţe Matematice din România, Vol. 3, Comunicări metodicoştiințifice, Universitatea din Craiova, 26-29 mai 1999, pp.193-200, Craiova, România
[9] Béla Finta, Remarks on a Generalisation of a Question Raised by Pál Erdős Concerning a Geometric Inequality in Acute Triangles, Scientific Bulletin of the "Petru Maior" University of Tirgu Mures, Vol. 14(XXXI), no. 2, pp. 33-35, ISSNL 1841-9267 (Print), ISSN 2285-438X (Online), ISSN 2286-3184 (CD-ROM), 2017.

[^0]: © 2018 Published by "Petru Maior" University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

