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Abstract 

The classical concept of instantaneous frequency, obtained by differentiating the 

instantaneous phase is one of the most used approaches. Nonlinear signals usually have 

nonlinear and nonstationary behavior. Revealing hidden properties of time discrete signals 

could be important in understanding specific phenomena or processes. This paper uses 

simulated signals to prove the utility of instantaneous frequency estimation in dedicated 

signal processing. The procedure is based on empirical mode decomposition of the signal 

into monocomponents. The Hilbert transform of these monocomponents reveals they 

instantaneous frequencies. There are certain mathematical requirements and limitations for 

signals that the proposed procedure could perform proper instantaneous frequency 

estimation. The used signals are artificial and the procedure is carried out in MATLAB. 
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1. Introduction 

Discrete time signal analysis is a very important 

task in research and practical experimentations. 

Usually signal analysis defines the parameters needed 

to construct and represent the model of a studied 

phenomenon. In most of cases the obtained data in 

form of discrete time signals are non-stationary, 

nonlinear and noisy. This paper focuses on a new 

nonlinear signal processing method in time-frequency 

domain named instantaneous frequency estimation. 

The instantaneous frequency generated many 

controversial discussions about its non-unique way 

definitions but remains an extremely useful analyzing 

tool in certain conditions [1], [2]. The most important 

fields where instantaneous frequency estimation is 

used are the exploration seismology, electrical 

engineering, biomedical applications [3]. This paper is 

organized as follows. The second chapter presents the 

theoretical background of the used method; chapter 

three presents the proposed procedure and the fourth 

the obtained results. Concluding remarks are done in 

the fifth chapter. 

 

2. Estimation of instantaneous frequency 

There are many elaborated and well-established 

methods available for processing nonstationary data. 

Since most of the methods still depend on time-

frequency analysis, they are limited to linear systems 

only and usual use predefined analyzing functions. In 

addition, priori knowledge about the signal is required 

in order to adapt the analyzing tool. Lately, new and 

adaptive methods were elaborated, which are mostly 

signal driven and no require expansion functions. One 

of these methods is the Empirical Mode 

Decomposition (EMD) presented in this work. While 

the concept of frequency is very old, the concept of 

instantaneous frequency (IF) is relatively new, 

originating with Nobel Laureate, Dennis Gabor (1946) 

[7]. The classical instantaneous phase originates with 

phase modulation concepts [4], in which the signal, 

f(t), has a representation of the form,  

   
 




t

dmjtj

etAtf 0

0 

 (1) 

Where the amplitude A(t) is a very slowly-varying 

function of time, with ω0 the carrier frequency, and 

with m(τ) a slowly-varying modulation function. The 

signal looks very similar to the basic exponential, 

     tjtetf
tj

00 sincos0 
  (2) 

A real signal is one that exhibits Hermitian 

symmetry between the positive-frequency and 

negative-frequency components [6]. The negative-

frequency components of a real signal may be 

eliminated from the signal representation without 

losing information by forming the analytic signal given 

by 
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          tjgtftfjtftS   (3) 

where g(t) is obtained by the Hilbert transform  

 

(HT), a convolution operation defined by 

    


 d
t

ftg 






1

 (4) 

A signal is analytic with a real DC component if its 

imaginary part is the HT of its real part [5]. Basically, 

the Hilbert transform maps cosines into sines and sines 

into negative cosines. Thus, each Fourier transform 

component is phase rotated by π/2, with positive 

frequency components phase-delayed by π/2 and 

negative frequency components phase-advanced by 

π/2. In the case of a real low-pass signal, removal of 

negative frequencies reduces the total bandwidth, 

allowing the signal to be sampled at half the usual 

Nyquist rate without aliasing [13,14]. and avoids the 

appearance of some interference terms generated by 

the interaction of positive and negative components in 

quadratic time-frequency decompositions [9]. 

A monocomponent signal as S(t) has an analytic 

associate of the form (2), any complex signal would 

qualify as monocomponent because any complex 

signal can be written in this form [11]. A 

multicomponent signal may be described as the sum of 

monocomponent signals [17]. Because the IF of a 

signal indicates the dominant frequency of the signal 

at a given time, the requirement of a monocomponent 

signal is to have IF a single-valued function of time. 

So, it is needed a decomposition into mono-

components but the procedure is not necessarily 

unique [12]. One of them is the Empirical Mode 

Decomposition (EMD) which fragments any signal in 

intrinsic mode functions (IMFs) as follows [17]:  

For a given discrete signal s(t), m1 is the mean 

value of its upper and lower envelope curves defined 

by local maxima and minima. The first prototype 

component c1 is computed: 

  11 mtsc    (5) 

In the second sifting process, c1 is treated as the 

data, and m11 is the mean of c1’s upper and lower 

envelopes: 

11111 mcc    (6) 

This sifting procedure is repeated k times, until c1k 

is an IMF, that is: 

  11111 ccmc kkk



 (7) 

If this component satisfies the stop criteria for IMF 

sifting, c1 this will be the first IMF. The residual signal 

will be constructed as follows: 

    1ctstr    (8) 

If r(t) satisfies the stop criterion for EMD then it 

will be the final residual signal and the EMD process 

will be finished. [16]. An IMF is defined as any 

function having the same (or differing at most by one) 

numbers of zero-crossing and extrema, and also having 

symmetric envelopes defined by the local maxima and 

minima, respectively. With the Hilbert transform, the 

IMF's yield instantaneous frequencies as functions of 

time. 

 

3. The proposed procedure 

The analyzed signal is decomposed in Intrinsic 

Mode Functions (IMFs) using the already mentioned 

sifting procedure. The obtained IMFs are Hilbert 

transformed in order to obtain analytic signals which 

instantaneous frequencies are estimated through the 

presented algorithm. The principle of the proposed 

procedure is presented on figure 2. 

 
Fig. 1: The proposed procedure 

 

For different properties different IMFs should be 

studied, usually the frequency of IMF decreases with 

the decomposition order.  

For higher frequency related behavior the first 

IMFs must be evaluated, for slow changes the higher 

order IMFs could be responsible. 

 

4. Simulation results 

The used signals are created artificially; the whole 

estimation procedure was carried out under MATLAB 

environment [10].  

The types and the lengths of signals were chosen in 

order to have enough gained information to be able to 

make concluding remarks.  

The first signal used is a ‘quadchirp’ from Matlab 

test signals, the signal and the resulted IMFs are 

presented on figure 2 

Fig. 2: The resulted IMFs of quadchirp signal 

 

The decomposition through the sifting method is 

very accurate, the reconstruction error (the difference 

between the original signal and the sum of resulted 

intrinsic functions) has a very small value. It is 

important to mention that the decomposition process 

depends on signal length, therefore the number of 
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obtained IMFs is strongly dependent on signal 

properties. The second signal is the so called 

‘mishmash’ signal (also from Matlab) presented on 

figure 4. The reconstructed signals and the 

approximation errors for the two test signals are 

presented on figure 3 and 4.  

Fig. 3: The approximation error of EMD (‘quadchirp’) 

 

 
Fig. 4: The approximation error of EMD (‘mishmash’) 

 

The estimated instantaneous frequencies of 

obtained monocomponents carry time localized 

information about frequency domain behavior. 

 
Fig. 5: The EMD of ‘mishmash’ 

 

As presented on figure 5, the higher order IMFs 

contain the lower frequency parts. It is convenient to 

choose the corresponding IMF in order to search for 

specific signal changes if the frequency domain is 

already known. Instantaneous frequency (IF) express 

the signal spectral variations as a function of time. This 

can be used to detect unwanted changes in the analyzed 

signal. The instantaneous frequencies obtained for the 

first six component IMFs are presented on figure 6. 

Fig. 6: The Ifs for first six IMFs of ‘mishmash’ signal 

 

The Hilbert transform based instantaneous 

frequency estimation gave the following results for the 

‘quadchirp’ signal. At first on figure 7 the 

decomposition in nine IMFs is presented. 

 
Fig. 7: The IMF/IF pairs (‘leleccum’ signal) obtained 

 

The obtained instantaneous frequencies for the first 

six IMFs are presented on figure 8. 

  
Fig. 8: The IMF/IF pairs obtained for the ‘quadchirp’ signal 
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The linear variation of the signal frequency can be 

easily observed on the IF of the first IMF, it is a 

specific feature for this kind of signal. 

 

5. Conclusions 

The instantaneous frequency (IF) is a basic 

parameter which may be used to describe the 

nonstationarity in a process or a signal. The EMD 

procedure can be viewed as a generalized time-

frequency decomposition in monocomponents without 

expansion functions. The analytic associate of a 

monocomponent asymptotic signal is fully 

characterized by its instantaneous amplitude and 

instantaneous phase, from which we can determine its 

IF. Time-frequency methods are preferred for a wide 

range of applications in which the signals have time-

varying spectral characteristics or multiple 

components for which the variables time and 

frequency are related as in biomedical signal analysis, 

fault detection and parameter estimation. Future work 

will focus on using linear and nonlinear filter banks to 

obtain IMFs and perform the Hilbert transform.  
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