

© 2018 Published by University Press. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

18

Scientific Bulletin of the „Petru Maior” University of Târgu

Mureş

Vol. 15 (XXXII) no. 2, 2018

ISSN-L 1841-9267 (Print), ISSN 2285-438X (Online), ISSN

2286-3184 (CD-ROM)

QUALITATIVE METRICS FOR DEVELOPMENT

TECHNOLOGIES EVALUATION IN DATABASE-DRIVEN

INFORMATION SYSTEMS

Marius MUJI1, Dorin BICĂ2
1,2 University of Medicine, Pharmacy, Sciences and Technology of Tîrgu Mureș

Gheorghe Marinescu Street, no. 38, 540139 Tîrgu Mureş, Romania
1marius_muji@yahoo.com

2dorin.bica@ing.upm.ro

Abstract

Database-driven information systems are nowadays widespread in various application

domains. The technologies employed to manage the database itself are generally built on

the same data model – the relational model – and their evolution is mainly related to their

physical performances, without significant changes in their conceptual foundation. By

contrast, the user interface development technologies are changing at an increasing pace,

which cause important problems related to learning costs and compatibilities with the

existing systems. This paper provides a set of qualitative metrics which can be used to

evaluate and compare different technologies, based on the most important conceptual

objectives of database-driven information systems.

Key words: Database-driven application, information systems, declarative specifications

1. Introduction

Current technologies used to develop database-

driven information systems can be classified in two

distinct categories [1], [2]:

 The database management systems, used to

build and maintain the integrated community

view of the system;

 The development languages, used to develop

the user views of the system, including all the

user-specific data, presentation rules, and the

necessary transformations needed to map

every user view with the community view.

The database management systems are generally

built around the relational model [3], which constitutes

the common ground for the conceptual design of the

community view, with all the advantages related to

metadata compatibility and language standardization

(e.g., the SQL standard [4]).

On the other hand, the development technologies

used to specify the user views of the system don’t share

a common data model and require specific training for

the application developers. Moreover, these

technologies are changing at an increasing pace, which

cause important problems related to learning costs and

compatibilities with the existing systems.

This paper proposes a set of qualitative metrics,

which can be used to compare different technologies,

so that the developers can make the best choices, based

on a consistent set of evaluation criteria.

The proposed evaluation metrics could become a

valuable tool for the researchers of this field, by

emphasizing the conceptual advantages of a certain

research direction over another.

Section 2 introduces the conceptual foundation on

which the metrics are conceived, Section 3 contains the

definition of the proposed metrics, with an example of

application, and Section 4 concludes by identifying the

research directions revealed by the evaluation metrics.

2. Information systems’ classical objectives

In this chapter we will discuss the objectives of the

information systems, which were always important for

the development community, and which explain the

evolution of the technology in this field.

The first objective considered is related to the

structural specification, through metadata, of the

application domain’s semantical constraints – as

opposed to the procedural approach, where these

constraints are expressed by the explicit specification

of a sequence of CRUD (create, retrieve, update,

delete) operations.

In the structural (data-oriented) approach, the

information system’s processes are specified as a

sequence of transitions from a consistent state of the

19

database to another. In this case, the database

management system would be able to (automatically)

keep the database consistent. Thus, the information

system can react with ‘intelligence’, doing nothing else

than to preserve anytime the consistency of the

database [5]. The entire semantic content of the

system, including its “business rules” [6], [7], [8], [9],

would then be specified through the system’s

metadata. Consequently, any change of the system

requirements would determine some changes of the

system’s declared metadata, which would take the role

of the information system’s DNA [10].

By contrast, in a procedural approach, when the

information system’s procedures are defined as a

sequence of CRUD operations, every specification of

a system procedure should check if any of those CRUD

operations violated the consistency of the entire

system. Any change in system requirements would

generate new sequences of procedural code, which

usually have to be specified be the developer.

The first objective of the information systems can,

thus, be expressed as the possibility to formulate

declarative specifications, following a structural, data-

oriented, approach to system development, as opposed

to the procedural, process-oriented, approach.

The second objective identified is the possibility to

accept new categories of users in the system, with

minimal disturbances in the activity of the existing

users. This objective’s goal is to protect the existing

users from the system specification changes,

determined by the subsequent expansion of the system.

Under the ANSI-SPARC recommendations, first

published in 1975 [2], [1], database systems address

this objective through an architectural distinction

between the integrated community view and the various

user views of the system. The separation of the external

level of the system from the conceptual level is meant

to provide logical data independence – through which

the database systems achieve the second objective

formulated above.

The third objective considered is the possibility to

change the technology without other changes related to

the way in which data is defined and/or perceived by

the users. This objective’s goal is to be able to increase

the physical performances (e.g., computing power,

response time), without any additional development

and/or operating costs.

Database systems address this objective, under the

same ANSI-SPARC recommendations, through the

architectural separation between the logical

specification of the database (compatible with a certain

logical data model) and its physical implementation.

The degree in which the system can be specified at the

logical level, without the need to access the physical

level, would determine the degree of physical data

independence ensured by the system.

The fourth objective considered is the possibility

to define the system at a high level of abstraction, as

close as possible to the natural language. This

objective’s goal is to reduce the development and

maintenance costs, through improvements related

mainly to the learning curve of the development

technologies. Moreover, a higher level of abstraction

in system definition implies a reduction of the

development time, through the automatic generation of

the physical specifications, based on the data models

employed at the logical level.

An important challenge related to this objective is

to achieve a certain level of abstraction at which the

end users will be able to define the system themselves,

using business-specific concepts and terms, without

any other programming skills, determined by the

implementation technologies.

3. Qualitative evaluation metrics for

development technologies

The information systems objectives formulated in

the previous section provide a valuable conceptual

support for a set of qualitative evaluation metrics for

current and futures development technologies.

Regarding the first objective, which refers to the

declarative specification of the system, we considered

two possible choices (the first being the desirable one):

1. The data-oriented (declarative) approach;

2. The process-oriented (procedural) approach.

Concerning the second objective formulated in

Section 2, which refers to the logical data

independence, we also considered two opposite

choices (the first being the desirable one):

1. The implicit realization of the logical data

independence, based on the meta-metadata

compatibilities between the data model used to specify

the user views, and the data model used to specify the

community view, respectively;

2. The explicit realization of the logical data

independence, through the complete specification of

the necessary transformations/mappings between the

data structures existent at the community level and

those exposed at every user view level.

In all the cases with a low level of compatibility

between the data structures employed for community

view schema (e.g., the relations, in relational

databases) and those employed for user view schemas

(e.g. the collections of objects, in object-oriented

technologies), there is a significant development effort

to specify the necessary mappings between the

corresponding data structures [11]. The usage of

dedicated software tools, developed to overcome the

so called “impedance mismatch” [12], [13] between

the relational model and the object-oriented data

abstractions, generically called ORMs (object-

relational mapping) [14], [15], [16], generates

significant development and maintenance costs, which

could only be overcome through a higher compatibility

at the data models’ level.

For the third objective considered, related to the

physical data independence, there are, also, two

possibilities (the first being the desirable one):

1. A high degree of physical data independence,

ensured by the abstract (mathematical) definition of

20

the data model employed at the logical level of the

system;

2. A low degree of physical data independence,

when a significant part of the information system

cannot be defined at the logical level, and it needs

some physical level specifications.

Considering the fourth objective, the one which

refers to the abstraction level of the system’s

specifications, we considered four possibilities (in a

descending order of desirability):

1. The system is specified at the external level;

2. The system is specified at the conceptual

level;

3. The system is specified at the logical level;

4. The system is specified at the physical level.

The evaluation metrics defined above, synthesized

in table 1, are extremely useful to compare different

classes of technologies, like the relational database

systems (RDBMSs), currently used to define the

community view, and the object-oriented development

languages, currently used to define the user views.

Table 1: The proposed qualitative metrics

Metrics Possible options

1. Declarative

specification of the

system

1. Declarative approach

2. Procedural approach

2. Logical data

independence

1. Implicit realization

2. Explicit realization

3. Physical data

independence

1. High degree

2. Low degree

4. Abstraction level for

system specification

1. External level

2. Conceptual level

3. Logical level

4. Physical level

If we consider the declarative/procedural metrics,

we observe that, although current commercial

implementations of the relational model do not support

the entire declarative apparatus facilitated by the

mathematical definition of the model [17], [18], they

still provide declarative features, determined by the

implementation of an essential data constructor (i.e.,

the relation), and the automatic enforcement of a

predefined set of integrity constraints (e.g., the primary

keys, the alternate keys, the foreign keys).

Consequently, the relational systems are, essentially,

declarative systems, due to their theoretical support,

provided by the mathematical definition of their data

structures, operators, and integrity constraints. The

same conclusion could be drawn for any other class of

technologies based on other data models, as long as the

respective models provide the same kind of

mathematical support as the relational model [19],

[20].

Considering the object-oriented application

development technologies, they usually provide some

declarative support through certain design patterns that

model typical business processes, but, in the general

case, they need procedural specifications in order to

model the behavior of the user interface (i.e., the

presentation rules [5]) generated by every CRUD

operation initiated by the end-user.

As we have already discussed, at the current stage

of the technology, the logical data independence

comes with the price of the explicit mappings between

the community view’s relational data, at one hand, and

the collections of objects used to present the user views

of the system, at the other hand.

On the contrary, using at the user views’ level a

data-model driven technology would provide implicit

data structure mappings with the community data,

provided that the data structures of the considered data

model do have a native matching with the relational

data.

Moreover, if the development technology is a data-

model driven one [21], [22], the respective technology

could provide a high degree a physical data

independence, since the respective data model comes

with an abstract, mathematical definition [19], [20].

That is not the case for the object-oriented

technologies, which need, at some point, to ‘brake’ the

encapsulation and to write some physical

specifications, in order to define the system behavior

determined by the CRUD operations initiated by the

end-user [1].

Table 2 contains the results obtained by comparing,

under the proposed evaluation metrics, the current

object-oriented technologies with a data model driven

technology, developed around a logical data model,

derived from the relational model, and adapted for user

view logical modeling.

Table 2: Data-model driven technologies vs. current

technologies

 Data-model

based

technologies

Current

development

languages

(object-

oriented)

1. Declarative

specification of

the system

Declarative

(data-

oriented)

approach

Procedural

(process-

oriented)

approach

2. Logical data

independence

Implicit

realization

Explicit

realization

3. Physical data

independence

High degree Low Degree

4. Abstraction

level for system

specification

Logical level Physical

level

From Table 2 it can be seen that a data-model

driven approach would better satisfy the general

21

objectives of the information systems than current

development languages.

4. Conclusions

Application development technology is changing

so fast, that the professional community is struggling

to keep up with its evolution. In this context, we need

some well founded criteria which would support the

developers to make the most appropriate choices,

generating long term benefits related to technology

switching cost and system maintenance.

Using four of the most important objectives of the

information systems, which were always followed by

the professionals of the field, we defined a set of

qualitative metrics which can be used to evaluate and

compare different development technologies.

Like it can be seen from the previous section, the

proposed evaluation metrics can be used not only to

compare two specific technologies, but to compare

different classes of technologies, guiding the

researchers of the field towards the best development

directions. Thus, considering the application of the

evaluation metrics presented in table 2, we can

conclude that future research on development

technologies should concentrate on data-model driven

technologies, which would allow the declarative

specification of the information system, would ensure

the logical data independence at minimal costs, would

ensure a high level of physical data independence, and,

not least, would provide the logical support for high

level system specifications.

References

[1] Date C. J. (2003), An Introduction to Database

Systems (8th edition), Addison-Wesley.

[2] ANSI/X3/SPARC Study Group on Data Base

Management Systems, Interim Report, FDT

(bulletin of ACM SIGMOD), 1975.

[3] Codd E. F. (1980), Data models in database

management in The 1980 workshop on data

abstraction, databases and conceptual modeling,

New York.

[4] International Organization for Standardization,

ISO/IEC 9075-1:2008 (SQL/Framework), 2008.

[5] Date C. J. (2000), What Not How: The Business

Rules Approach to Application Development,

Addison-Wesley.

[6] Cemus K., Cerny T. (2016), Automated

extraction of business documentation in

enterprise information systems ACM SIGAPP,

Applied Computing Review, vol. 16, no. 4, pp.

5-13.

[7] Kluza K., Nalepa G. J. (2017), A method for

generation and design of business processes

with business rules, Information and Software

Technology, vol. 91, no. C, pp. 123-141.

[8] Ross R. G. (2013), Business Rule Concepts,

Business Rule Solutions Inc.

[9] Halle B. v. (2001), Business Rules Applied:

Building Better Systems Using the Business

Rules Approach, Wiley.

[10] Steimann F., Kuhne T. (2005), Coding for the

Code, Queue, vol. 3, no. 10, pp. 44-51.

[11] Bagheri H., Tang C., Sullivan K. (2017),

Automated Synthesis and Dynamic Analysis of

Tradeoff Spaces for Object-Relational Mapping,

IEEE Transactions on Software Engineering,

vol. 43, no. 2, pp. 145-163.

[12] Colley D., Stanier C. (2017), Identifying New

Directions in Database Performance Tuning,

Procedia Computer Science, vol. 121, no. C, pp.

260-265.

[13] Adya A., Blakeley J. A., Melnik S., Muralidhar

S. (2007), Anatomy of the ADO.NET entity

framework, ACM SIGMOD international

conference on Management of data, Beijing,

China.

[14] Rull G., Bernstein P. A., Santos I. G. dos,. Katsis

Y, Melnik S., Teniente E. (2013), Query

containment in entity SQL, ACM SIGMOD

International Conference on Management of

Data, New York, USA.

[15] Red Hat, November (2011) [Online]. Available:

http://www.hibernate.org.

[16] Apache Software Foundation (2011), November

2011. [Online]. Available:

http://cayenne.apache.org/.

[17] Date C. J., Darwen H. (2000), Foundation for

Future Database Systems: The Third Manifesto

(2nd Edition), Addison-Wesley.

[18] Haan L. d., Koppelaars T. (2007), Applied

Mathemathics for Database Professionals,

Apress.

[19] Muji M. (2013), A Model for User Interface

Design in Database-Driven Information

Systems, Scientific Bulletin of the Petru Maior

University of Targu Mures, vol. 10, no. 1, pp.

24-27.

[20] Muji M. (2015), Logical Operators for the Data-

oriented Design of the User Interfaces, Procedia

Technology, vol. 19, pp. 810-815.

[21] Lewis B. (2010), Data-Driven Molecular

Specifications, Part 1, The Data Administration

Newsletter - TDAN.com, October 2010.

[22] Lewis B. (2010), Data-Driven Molecular

Specifications, Part 2, The Data Administration

Newsletter - TDAN.com, December 2010.

