THE COMPLEX VERSION OF A RESULT FOR REAL ITERATIVE FUNCTIONS

Béla FINTA
University of Medicine, Pharmacy, Sciences and Technology of Tîrgu Mureş
Gheorghe Marinescu Street, no. 38, 540139 Tîrgu Mureş, Romania
e-mail: fintab@science.upm.ro

Abstract

The purpose of this paper is to show a complex version for complex iterative functions of a result for real iterative functions and to give some applications for complex nonlinear equations.

Keywords: complex nonlinear equations, complex iterative functions, Banach fixed point theorem, Lagrange mean value theorem in complex case

1 Introduction

It is known the following result for iterative functions on the real line, see for example [1] or [2]:
Theorem 1. (general theorem for real iterative functions) If φ is derivable on the interval $J=\left[x_{0}-\right.$ $\left.\delta, x_{0}+\delta\right], \delta>0$ and the derivative function φ^{\prime} satisfies the inequality $0 \leq\left|\varphi^{\prime}(x)\right| \leq m<1$ for every $x \in J$ and the point $x_{1}=\varphi\left(x_{0}\right)$ verifies the inequality $\left|x_{1}-x_{0}\right| \leq(1-m) \delta$, then:

- we can form the sequence $\left\{x_{k}\right\}_{k \in \mathbb{N}}$ with the iterative rule $x_{k+1}=\varphi\left(x_{k}\right), k \in \mathbb{N}$, such that for every $k \in \mathbb{N}$ we have $x_{k} \in J ;$
- there exists $\lim _{k \rightarrow \infty} x_{k}=x^{*} \in J ;$
- x^{*} is the unique solution of the equation $\varphi(x)=$ x in the interval J.

The purpose of this paper is to show a complex variant of this theorem.

2 Main part

Let us consider the closed disc $B(w, r)=\{z \in$ $\mathbb{C} /|z-w| \leq r\}$ in the complex plane \mathbb{C}, with center w and radius $r>0$. First we remember the Banach fixed point theorem in the case of the closed disc $B(w, r)$:

[^0]Theorem 2. Let $\phi: B(w, r) \rightarrow B(w, r)$ be a contraction, i.e. there exists the constant $\alpha \in[0,1)$ such that $|\phi(z)-\phi(v)| \leq \alpha \cdot|z-v|$ for every $z, v \in B(w, r)$. Then the function ϕ has a unique fixed point in $B(w, r)$, which can be obtained as the limit of the sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$ given by the iteration $z_{k+1}=\phi\left(z_{k}\right), k \in \mathbb{N}$, for every $z_{0} \in B(w, r)$.

Proof. Because $B(w, r) \subset \mathbb{C}$ is a closed disc in the complex plane \mathbb{C}, will be a Banach space, too. Now we apply the Banach fixed point theorem for the function $\phi: B(w, r) \rightarrow B(w, r)$.

We say that the function $\phi: B(w, r) \rightarrow \mathbb{C}$ is holomorphic function on the closed disc $B(w, r)$, if it is complex derivable in every complex point $z \in$ $B(w, r)$. If the point z is a boundary point of the closed disc $B(w, r)$, then we suppose that the complex function ϕ is defined on a small open disc with center z and it is complex derivable in z.

Theorem 3. Let $\phi: B(w, r) \rightarrow \mathbb{C}$ be a holomorphic function on the closed disc $B(w, r)$, and $z, v \in$ $B(w, r)$ two distinct points. Then there exist points $u, s \in[z, v]=\{t \cdot z+(1-t) \cdot v / t \in[0,1]\}($ the line segment $[z, v] \subset \mathbb{C}$ with endpoints z and v) such that $\operatorname{Re} \phi^{\prime}(u)=\operatorname{Re}\left(\frac{\phi(z)-\phi(v)}{z-v}\right)$ and $\operatorname{Im} \phi^{\prime}(s)=$ $\operatorname{Im}\left(\frac{\phi(z)-\phi(v)}{z-v}\right)$, where $\operatorname{Re}()$ is the real part and $\operatorname{Im}()$ is the imaginary part of the complex function ϕ.

Proof. See for example [3] or [4].

Theorem 4. (general theorem for complex iterative functions) If $\phi: B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ is a holomorphic function on the closed disc $B\left(z_{0}, r\right), z_{0} \in \mathbb{C}, r>0$, such that the derivative function ϕ^{\prime} satisfies the inequality $0 \leq\left|\phi^{\prime}(z)\right| \leq m<\frac{\sqrt{2}}{2}$ for every $z \in B\left(z_{0}, r\right)$ and the point $z_{1}=\phi\left(z_{0}\right)$ verifies the inequality $\left|z_{1}-z_{0}\right| \leq$ $(1-\sqrt{2} \cdot m) \cdot r$, then:

- we can form the sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$ with the iterative rule $z_{k+1}=\phi\left(z_{k}\right), k \in \mathbb{N}$, such that for every $k \in \mathbb{N}$ we have $z_{k} \in B\left(z_{0}, r\right)$;
- there exists the limit of the sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$ and $\lim _{k \rightarrow \infty} z_{k}=z^{*} \in B\left(z_{0}, r\right) ;$
- z^{*} is the unique solution of the equation $\phi(z)=z$ in the closed disc $B\left(z_{0}, r\right)$.

Proof. Using theorem 3 for $z \in B\left(z_{0}, r\right)$ and $z \neq z_{0}$ we get: $\left|\frac{\phi(z)-\phi\left(z_{0}\right)}{z-z_{0}}\right|^{2}=\operatorname{Re}^{2}\left(\frac{\phi(z)-\phi\left(z_{0}\right)}{z-z_{0}}\right)+$ $\operatorname{Im}^{2}\left(\frac{\phi(z)-\phi\left(z_{0}\right)}{z-z_{0}}\right)=\operatorname{Re}^{2}\left(\phi^{\prime}(u)\right)+\operatorname{Im}^{2}\left(\phi^{\prime}(s)\right) \leq$ $\operatorname{Re}^{2}\left(\phi^{\prime}(u)\right)+\operatorname{Im}^{2}\left(\phi^{\prime}(u)\right)+\operatorname{Re}^{2}\left(\phi^{\prime}(s)\right)+$ $I m^{2}\left(\phi^{\prime}(s)\right)=\left|\phi^{\prime}(u)\right|^{2}+\left|\phi^{\prime}(s)\right|^{2} \leq m^{2}+m^{2}=$ $2 \cdot m^{2}$, so $\left|\phi(z)-\phi\left(z_{0}\right)\right| \leq \sqrt{2} \cdot m \cdot\left|z-z_{0}\right|$. First we show that $\phi\left(B\left(z_{0}, r\right)\right) \subset B\left(z_{0}, r\right)$, i.e. ϕ : $B\left(z_{0}, r\right) \rightarrow B\left(z_{0}, r\right)$. Indeed, for every $z \in B\left(z_{0}, r\right)$ we obtain: $\left|\phi(z)-z_{0}\right|=\left|\phi(z)-\phi\left(z_{0}\right)+z_{1}-z_{0}\right| \leq$ $\left|\phi(z)-\phi\left(z_{0}\right)\right|+\left|z_{1}-z_{0}\right| \leq \sqrt{2} \cdot m \cdot\left|z-z_{0}\right|+\left|z_{1}-z_{0}\right| \leq$ $\sqrt{2} \cdot m \cdot r+(1-\sqrt{2} \cdot m) \cdot r=r$. Using again theorem 3 for every $z, v \in B\left(z_{0}, r\right), z \neq v$ results $|\phi(z)-\phi(v)| \leq \sqrt{2} \cdot m \cdot|z-v|$. We choose $\alpha=\sqrt{2} \cdot m<1$ and the complex function $\phi: B\left(z_{0}, r\right) \rightarrow B\left(z_{0}, r\right)$ verifies the conditions of theorem 2. Consequently we can deduce the statements of theorem 4. q.e.d.

Observation 1. Because ϕ^{\prime} is a holomorphic function using the maximum modulus principle it is enough to have in theorem 4 the following condition: $0 \leq$ $\left|\phi^{\prime}(z)\right| \leq m<\frac{\sqrt{2}}{2}$ for every $z \in C\left(z_{0}, r\right)=\{z \in$ $\left.\mathbb{C} /\left|z-z_{0}\right|=r\right\}$.

3 Discussion and conclusion

Next we give some applications for theorem 4.
Conclusion 1. Using the translation the complex equation $f(z)=0$ is equivalent with the complex equation $z+f(z)=z$. We can consider the complex iterative function $\phi(z)=z+f(z)$. Now we apply theorem 4 for the iterative function ϕ and we obtain the following result for the function f : if the complex function $f: B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ is a holomorphic function on $B\left(z_{0}, r\right)$, with $z_{0} \in \mathbb{C}$ and $r>0$, $\left|1+f^{\prime}(z)\right| \leq m<\frac{\sqrt{2}}{2}$ for every $z \in B\left(z_{0}, r\right)$, and $\left|f\left(z_{0}\right)\right| \leq(1-\sqrt{2} \cdot m) \cdot r$, then the complex equation $f(z)=0$ has a unique solution z^{*} in the closed disc $B\left(z_{0}, r\right) \subset \mathbb{C}$ and z^{*} can be obtained as the limit of the sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$, given by the iterative formula $z_{k+1}=z_{k}+f\left(z_{k}\right), k \in \mathbb{N}$.

Conclusion 2. Using the translation and the homothety the complex equation $f(z)=0$ is equivalent with the complex equation $z+\omega \cdot f(z)=z, \omega \in$ $\mathbb{C}^{*}=\mathbb{C}-\{0\}$. We can consider the complex iterative function $\phi(z)=z+\omega \cdot f(z), \omega \in \mathbb{C}^{*}$. Now we apply theorem 4 for the iterative function ϕ and we obtain the following result for the function f : if the complex function $f: B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ is a holomorphic function on $B\left(z_{0}, r\right)$, with $z_{0} \in \mathbb{C}$ and $r>0$, $\left|1+\omega \cdot f^{\prime}(z)\right| \leq m<\frac{\sqrt{2}}{2}$ for every $z \in B\left(z_{0}, r\right)$, and $\left|f\left(z_{0}\right)\right| \leq(1-\sqrt{2} \cdot m) \cdot \frac{r}{|\omega|}$, then the complex equation $f(z)=0$ has a unique solution z^{*} in the closed disc $B\left(z_{0}, r\right) \subset \mathbb{C}$ and z^{*} can be obtained as the limit of the sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$, given by the iterative formula $z_{k+1}=z_{k}+\omega \cdot f\left(z_{k}\right), k \in \mathbb{N}$.

Conclusion 3. Using the complex Newton's transformation the complex equation $f(z)=0$ is equivalent with the complex equation $z-\frac{f(z)}{f^{\prime}(z)}=z$, where we suppose that $f^{\prime}(z) \neq 0$. We can consider the complex iterative function $\phi(z)=z-\frac{f(z)}{f^{\prime}(z)}$, the complex variant of the Newton's method. Now we apply theorem 4 for the iterative function ϕ and we obtain the following result for the function f : if the complex function $f: B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ is a holomorphic function on $B\left(z_{0}, r\right)$, with $z_{0} \in \mathbb{C}$ and $r>0$, and $f^{\prime}(z) \neq 0$ for every $z \in B\left(z_{0}, r\right)$, and $\frac{\left|f(z) \cdot f^{\prime \prime}(z)\right|}{\left[f^{\prime}(z)\right]^{2}} \leq m<\frac{\sqrt{2}}{2}$ for every $z \in B\left(z_{0}, r\right)$, and $\left|\frac{f\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right| \leq(1-\sqrt{2} \cdot m) \cdot r$, then the complex equation $f(z)=0$ has a unique solution z^{*} in the closed disc $B\left(z_{0}, r\right) \subset \mathbb{C}$ and z^{*} can be obtained as the limit of the sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$, given by the complex Newton's iterative formula $z_{k+1}=$ $z_{k}-\frac{f\left(z_{k}\right)}{f^{\prime}\left(z_{k}\right)}, k \in \mathbb{N}$.
Conclusion 4. Using the transformation of complex parallel method the complex equation $f(z)=0$ is equivalent with the complex equation $z-\frac{1}{\lambda} \cdot f(z)=$ $z, \lambda \in \mathbb{C}^{*}$. We can consider the complex iterative function $\phi(z)=z-\frac{1}{\lambda} \cdot f(z), \lambda \in \mathbb{C}^{*}$, the complex variant of the parallel method. Now we apply theorem 4 for the iterative function ϕ and we obtain the following result for the function f : if the complex function f : $B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ is a holomorphic function on $B\left(z_{0}, r\right)$, with $z_{0} \in \mathbb{C}$ and $r>0,\left|1-\frac{1}{\lambda} \cdot f^{\prime}(z)\right| \leq m<\frac{\sqrt{2}}{2}$ for every $z \in B\left(z_{0}, r\right)$, and $\left|f\left(z_{0}\right)\right| \leq(1-\sqrt{2} \cdot m) \cdot r \cdot|\lambda|$, then the complex equation $f(z)=0$ has a unique solution z^{*} in the closed disc $B\left(z_{0}, r\right) \subset \mathbb{C}$ and z^{*} can be obtained as the limit of the sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$, given by the iterative formula of the complex parallel method $z_{k+1}=z_{k}-\frac{1}{\lambda} \cdot f\left(z_{k}\right), k \in \mathbb{N}$.

Conclusion 5. Using the transformation of complex chord method, the complex equation $f(z)=0$ is equivalent with the complex equation $z-f(z)$. $\frac{z-a}{f(z)-f(a)}=z$, where $a \in \mathbb{C}$ is a fixed complex number, $z \neq a$ and $f(z) \neq f(a)$ for $z \neq a$. We can consider the complex iterative function $\phi(z)=$
$z-f(z) \cdot \frac{z-a}{f(z)-f(a)}$, where $a, z \in \mathbb{C}, z \neq a$, and $f(z) \neq f(a)$ for $z \neq a$, the complex variant of the chord method. The condition $f(a) \neq 0$ implies for $z \neq a$ that $\phi(z) \neq a$, too. Indeed, from equality $\phi(z)=a$ we get $z-f(z) \cdot \frac{z-a}{f(z)-f(a)}=a$, which means that $(z-a) \cdot \frac{f(a)}{f(z)-f(a)}=0$. Consequently, from the condition $f(a) \neq 0$ we can deduce $z=$ a.Now we apply theorem 4 for the iterative function ϕ and we obtain the following result for the function f : if the complex function $f: B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ is a holomorphic function on $B\left(z_{0}, r\right)$, with $z_{0} \in \mathbb{C}$ and $r>0$, and $a \in B\left(z_{0}, r\right)$ is a fixed complex number such that $f(a) \neq 0$ and for every $z \in B\left(z_{0}, r\right)-\{a\}$ we have $f(z) \neq f(a)$, $\frac{|f(a)|\left|f(a)-f(z)+f^{\prime}(z) \cdot(z-a)\right|}{|f(z)-f(a)|^{2}} \leq m<\frac{\sqrt{2}}{2}$ for every $z \in B\left(z_{0}, r\right)-\{a\}$, and $\left|\frac{\left(z_{0}-a\right) f\left(z_{0}\right)}{f\left(z_{0}\right)-f(a)}\right| \leq(1-\sqrt{2} \cdot m) \cdot r$ with $z_{0} \neq a$, then the complex equation $f(z)=0$ has a unique solution z^{*} in the closed disc $B\left(z_{0}, r\right) \subset \mathbb{C}$ and z^{*} can be obtained as the limit of the sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$, given by the iterative formula of the complex chord method $z_{k+1}=z_{k}-f\left(z_{k}\right) \cdot \frac{z_{k}-a}{f\left(z_{k}\right)-f(a)}, k \in \mathbb{N}$.

Conclusion 6. Using the transformation of complex Steffensen's method, the complex equation $f(z)=$ 0 is equivalent with the complex equation $z-$ $\frac{f^{2}(z)}{f(z+f(z))-f(z)}=z$. We can consider the complex iterative function $\phi(z)=z-\frac{f^{2}(z)}{f(z+f(z))-f(z)}$, the complex variant of the Steffensen's method. Now we apply theorem 4 for the iterative function ϕ and we obtain the following result for the function f : if the complex function $f: B\left(z_{0}, r\right) \rightarrow \mathbb{C}$ is a holomorphic function on $B\left(z_{0}, r\right)$, with $z_{0} \in \mathbb{C}$ and $r>0$,

$$
\begin{aligned}
& \mid 1-\left\{2 f(z) \cdot f^{\prime}(z)[f(z+f(z))-f(z)]\right. \\
- & \left.f^{2}(z) \cdot\left[f^{\prime}(z+f(z)) \cdot\left(1+f^{\prime}(z)\right)-f^{\prime}(z)\right]\right\} \\
: & {[f(z+f(z))-f(z)]^{2} \mid } \\
= & \mid 1-\left\{f^{2}(z) \cdot f^{\prime}(z)+2 f(z) \cdot f^{\prime}(z) \cdot f(z+f(z))\right. \\
- & \left.f^{2}(z) \cdot f^{\prime}(z+f(z)) \cdot\left(1+f^{\prime}(z)\right)\right\} \\
: & {[f(z+f(z))-f(z)]^{2} \left\lvert\, \leq m<\frac{\sqrt{2}}{2}\right. }
\end{aligned}
$$

for every $z \in B\left(z_{0}, r\right)$, and $\left|\frac{f^{2}\left(z_{0}\right)}{f\left(z_{0}+f\left(z_{0}\right)\right)-f\left(z_{0}\right)}\right| \leq$ $(1-\sqrt{2} \cdot m) \cdot r$, then the complex equation $f(z)=0$ has a unique solution z^{*} in the closed disc $B\left(z_{0}, r\right) \subset$ \mathbb{C} and z^{*} can be obtained as the limit of the sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$, given by the iterative formula of the complex Steffensen's method $z_{k+1}=z_{k}-$ $\frac{f^{2}\left(z_{k}\right)}{f\left(z_{k}+f\left(z_{k}\right)\right)-f\left(z_{k}\right)}, k \in \mathbb{N}$.

Conclusion 7. The equation $z^{n}-a=0$, where $a \in$ \mathbb{C}^{*} is a fixed complex number and $n \in \mathbb{N}, n \geq 2$ is a fixed natural number, is equivalent with the complex equation $\frac{1}{2} \cdot\left(z+\frac{a}{z^{n-1}}\right)=z, z \in \mathbb{C}^{*}$. We can consider the complex iterative function $\phi(z)=\frac{1}{2} \cdot\left(z+\frac{a}{z^{n-1}}\right)$. Now we apply theorem 4 for the iterative function ϕ and we obtain the following result: if we fix $z_{0} \in \mathbb{C}$ and $r>0$ such that $0 \notin B\left(z_{0}, r\right)$ and $\left|1-\frac{(n-1) a}{z^{n}}\right| \leq$ $2 \cdot m<\sqrt{2}$ for every $z \in B\left(z_{0}, r\right)$, and $\left|z_{0}-\frac{a}{z_{0}^{n-1}}\right| \leq$ $2 \cdot(1-\sqrt{2} \cdot m) \cdot r$, then the complex sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$, given by the iterative formula $z_{k+1}=\frac{1}{2} \cdot\left(z_{k}+\frac{a}{z_{k}^{n-1}}\right)$ is convergent and tends to $\sqrt[n]{a}$, the complex nth root of $a \in \mathbb{C}^{*}$. We mention the particular case for $n=2:$ if we fix $z_{0} \in \mathbb{C}$ and $r>0$ such that $0 \notin B\left(z_{0}, r\right)$, and $\left|1-\frac{a}{z^{2}}\right| \leq 2 \cdot m<\sqrt{2}$ for every $z \in B\left(z_{0}, r\right)$, and $\left|z_{0}-\frac{a}{z_{0}}\right| \leq 2 \cdot(1-\sqrt{2} \cdot m) \cdot r$, then the complex sequence $\left\{z_{k}\right\}_{k \in \mathbb{N}}$, given by the iterative formula $z_{k+1}=\frac{1}{2}$. $\left(z_{k}+\frac{a}{z_{k}}\right)$ is convergent and tends to \sqrt{a}, the complex square root of $a \in \mathbb{C}^{*}$.

References

[1] E. A. Volkov, Numerical Methods, Publishing Company MIR, Moscow, 1986.
[2] Béla Finta, Curs de analiză numerică, Universitatea "Petru Maior", Tg Mures, 2004.
[3] J. Cl. Evard and F. Jafari, A Complex Rolle's Theorem, Amer. Math. Monthly 99(1992), 858861.
[4] Árpád Száz, A Cauchy Mean Value Theorem for Complex Functions, Math. Student 64(1995), 125-127.

[^0]: (C) 2017 Published by "Petru Maior" University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

