

THE COMPLEX VERSION OF A RESULT FOR REAL ITERATIVE FUNCTIONS

Béla FINTA

University of Medicine, Pharmacy, Sciences and Technology of Tîrgu Mureş Gheorghe Marinescu Street, no. 38, 540139 Tîrgu Mureş, Romania e-mail: fintab@science.upm.ro

Abstract

The purpose of this paper is to show a complex version for complex iterative functions of a result for real iterative functions and to give some applications for complex non-linear equations.

Keywords: complex nonlinear equations, complex iterative functions, Banach fixed point theorem, Lagrange mean value theorem in complex case

1 Introduction

It is known the following result for iterative functions on the real line, see for example [1] or [2]:

Theorem 1. (general theorem for real iterative functions) If φ is derivable on the interval $J = [x_0 - \delta, x_0 + \delta], \delta > 0$ and the derivative function φ' satisfies the inequality $0 \le |\varphi'(x)| \le m < 1$ for every $x \in J$ and the point $x_1 = \varphi(x_0)$ verifies the inequality $|x_1 - x_0| \le (1 - m)\delta$, then:

- we can form the sequence $\{x_k\}_{k\in\mathbb{N}}$ with the iterative rule $x_{k+1} = \varphi(x_k), k \in \mathbb{N}$, such that for every $k \in \mathbb{N}$ we have $x_k \in J$;
- there exists $\lim_{k\to\infty} x_k = x^* \in J;$
- x^* is the unique solution of the equation $\varphi(x) = x$ in the interval J.

The purpose of this paper is to show a complex variant of this theorem.

2 Main part

Let us consider the closed disc $B(w, r) = \{z \in \mathbb{C}/|z-w| \le r\}$ in the complex plane \mathbb{C} , with center w and radius r > 0. First we remember the Banach fixed point theorem in the case of the closed disc B(w, r):

Theorem 2. Let $\phi : B(w,r) \to B(w,r)$ be a contraction, i.e. there exists the constant $\alpha \in [0,1)$ such that $|\phi(z) - \phi(v)| \leq \alpha \cdot |z - v|$ for every $z, v \in B(w, r)$. Then the function ϕ has a unique fixed point in B(w,r), which can be obtained as the limit of the sequence $\{z_k\}_{k\in\mathbb{N}}$ given by the iteration $z_{k+1} = \phi(z_k), k \in \mathbb{N}$, for every $z_0 \in B(w,r)$.

Proof. Because $B(w, r) \subset \mathbb{C}$ is a closed disc in the complex plane \mathbb{C} , will be a Banach space, too. Now we apply the Banach fixed point theorem for the function $\phi: B(w, r) \to B(w, r)$.

We say that the function $\phi : B(w,r) \to \mathbb{C}$ is holomorphic function on the closed disc B(w,r), if it is complex derivable in every complex point $z \in$ B(w,r). If the point z is a boundary point of the closed disc B(w,r), then we suppose that the complex function ϕ is defined on a small open disc with center z and it is complex derivable in z.

Theorem 3. Let $\phi : B(w,r) \to \mathbb{C}$ be a holomorphic function on the closed disc B(w,r), and $z, v \in B(w,r)$ two distinct points. Then there exist points $u, s \in [z, v] = \{t \cdot z + (1 - t) \cdot v/t \in [0, 1]\}$ (the line segment $[z, v] \subset \mathbb{C}$ with endpoints z and v) such that $\operatorname{Re}\phi'(u) = \operatorname{Re}(\frac{\phi(z) - \phi(v)}{z - v})$ and $\operatorname{Im}\phi'(s) = \operatorname{Im}(\frac{\phi(z) - \phi(v)}{z - v})$, where $\operatorname{Re}()$ is the real part and $\operatorname{Im}()$ is the imaginary part of the complex function ϕ .

Proof. See for example [3] or [4]. \Box

^{©2017} Published by "Petru Maior" University Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Theorem 4. (general theorem for complex iterative functions) If ϕ : $B(z_0, r) \to \mathbb{C}$ is a holomorphic function on the closed disc $B(z_0, r), z_0 \in \mathbb{C}, r > 0$, such that the derivative function ϕ' satisfies the inequality $0 \le |\phi'(z)| \le m < \frac{\sqrt{2}}{2}$ for every $z \in B(z_0, r)$ and the point $z_1 = \phi(z_0)$ verifies the inequality $|z_1 - z_0| \le$ $(1 - \sqrt{2} \cdot m) \cdot r$, then:

- we can form the sequence $\{z_k\}_{k\in\mathbb{N}}$ with the iterative rule $z_{k+1} = \phi(z_k), k \in \mathbb{N}$, such that for every $k \in \mathbb{N}$ we have $z_k \in B(z_0, r)$;
- there exists the limit of the sequence $\{z_k\}_{k\in\mathbb{N}}$ and $\lim_{k\to\infty} z_k = z^* \in B(z_0, r);$
- z^* is the unique solution of the equation $\phi(z) = z$ in the closed disc $B(z_0, r)$.

Proof. Using theorem 3 for $z \in B(z_0, r)$ and $z \neq z_0$ we get: $|\frac{\phi(z)-\phi(z_0)}{z-z_0}|^2 = Re^2(\frac{\phi(z)-\phi(z_0)}{z-z_0}) + Im^2(\frac{\phi(z)-\phi(z_0)}{z-z_0}) = Re^2(\phi'(u)) + Im^2(\phi'(s)) \leq Re^2(\phi'(u)) + Im^2(\phi'(u)) + Im^2(\phi'(s)) = |\phi'(u)|^2 + |\phi'(s)|^2 \leq m^2 + m^2 = 2 \cdot m^2$, so $|\phi(z) - \phi(z_0)| \leq \sqrt{2} \cdot m \cdot |z - z_0|$. First we show that $\phi(B(z_0, r)) \subset B(z_0, r)$, i.e. ϕ : $B(z_0, r) \rightarrow B(z_0, r)$. Indeed, for every $z \in B(z_0, r)$ we obtain: $|\phi(z) - z_0| = |\phi(z) - \phi(z_0) + z_1 - z_0| \leq \sqrt{2} \cdot m \cdot r + (1 - \sqrt{2} \cdot m) \cdot r = r$. Using again theorem 3 for every $z, v \in B(z_0, r), z \neq v$ results $|\phi(z) - \phi(v)| \leq \sqrt{2} \cdot m \cdot |z - v|$. We choose $\alpha = \sqrt{2} \cdot m < 1$ and the complex function ϕ : $B(z_0, r) \rightarrow B(z_0, r)$ verifies the conditions of theorem 2. Consequently we can deduce the statements of theorem 4. q.e.d.

Observation 1. Because ϕ' is a holomorphic function using the maximum modulus principle it is enough to have in theorem 4 the following condition: $0 \leq |\phi'(z)| \leq m < \frac{\sqrt{2}}{2}$ for every $z \in C(z_0, r) = \{z \in \mathbb{C}/|z - z_0| = r\}.$

3 Discussion and conclusion

Next we give some applications for theorem 4.

Conclusion 1. Using the translation the complex equation f(z) = 0 is equivalent with the complex equation z + f(z) = z. We can consider the complex iterative function $\phi(z) = z + f(z)$. Now we apply theorem 4 for the iterative function ϕ and we obtain the following result for the function f: if the complex function $f: B(z_0, r) \to \mathbb{C}$ is a holomorphic function on $B(z_0, r)$, with $z_0 \in \mathbb{C}$ and r > 0, $|1 + f'(z)| \le m < \frac{\sqrt{2}}{2}$ for every $z \in B(z_0, r)$, and $|f(z_0)| \le (1 - \sqrt{2} \cdot m) \cdot r$, then the complex equation f(z) = 0 has a unique solution z^* in the closed disc $B(z_0, r) \subset \mathbb{C}$ and z^* can be obtained as the limit of the sequence $\{z_k\}_{k \in \mathbb{N}}$, given by the iterative formula $z_{k+1} = z_k + f(z_k), k \in \mathbb{N}$.

Conclusion 2. Using the translation and the homothety the complex equation f(z) = 0 is equivalent with the complex equation $z + \omega \cdot f(z) = z, \omega \in \mathbb{C}^* = \mathbb{C} - \{0\}$. We can consider the complex iterative function $\phi(z) = z + \omega \cdot f(z), \omega \in \mathbb{C}^*$. Now we apply theorem 4 for the iterative function ϕ and we obtain the following result for the function f: if the complex function $f : B(z_0, r) \to \mathbb{C}$ is a holomorphic function on $B(z_0, r)$, with $z_0 \in \mathbb{C}$ and r > 0, $|1 + \omega \cdot f'(z)| \le m < \frac{\sqrt{2}}{2}$ for every $z \in B(z_0, r)$, and $|f(z_0)| \le (1 - \sqrt{2} \cdot m) \cdot \frac{r}{|\omega|}$, then the complex equation f(z) = 0 has a unique solution z^* in the closed disc $B(z_0, r) \subset \mathbb{C}$ and z^* can be obtained as the limit of the sequence $\{z_k\}_{k\in\mathbb{N}}$, given by the iterative formula $z_{k+1} = z_k + \omega \cdot f(z_k), k \in \mathbb{N}$.

Conclusion 3. Using the complex Newton's transformation the complex equation f(z) = 0 is equivalent with the complex equation $z - \frac{f(z)}{f'(z)} = z$, where we suppose that $f'(z) \neq 0$. We can consider the complex iterative function $\phi(z) = z - \frac{f(z)}{f'(z)}$, the complex variant of the Newton's method. Now we apply theorem 4 for the iterative function ϕ and we obtain the following result for the function f: if the complex function $f: B(z_0, r) \to \mathbb{C}$ is a holomorphic function on $B(z_0, r)$, with $z_0 \in \mathbb{C}$ and r > 0, and $f'(z) \neq 0$ for every $z \in B(z_0, r)$, and $\left|\frac{f(z_0)}{f'(z_0)}\right| \leq (1 - \sqrt{2} \cdot m) \cdot r$, then the complex equation f(z) = 0 has a unique solution z^* in the closed disc $B(z_0, r) \subset \mathbb{C}$ and z^* can be obtained as the limit of the sequence $\{z_k\}_{k\in\mathbb{N}}$, given by the complex Newton's iterative formula $z_{k+1} =$ $z_k - \frac{f(z_k)}{f'(z_k)}, k \in \mathbb{N}$.

Conclusion 4. Using the transformation of complex parallel method the complex equation f(z) = 0 is equivalent with the complex equation $z - \frac{1}{\lambda} \cdot f(z) = z, \lambda \in \mathbb{C}^*$. We can consider the complex iterative function $\phi(z) = z - \frac{1}{\lambda} \cdot f(z), \lambda \in \mathbb{C}^*$, the complex variant of the parallel method. Now we apply theorem 4 for the iterative function ϕ and we obtain the following result for the function f: if the complex function f : $B(z_0, r) \to \mathbb{C}$ is a holomorphic function on $B(z_0, r)$, with $z_0 \in \mathbb{C}$ and $r > 0, |1 - \frac{1}{\lambda} \cdot f'(z)| \le m < \frac{\sqrt{2}}{2}$ for every $z \in B(z_0, r)$, and $|f(z_0)| \le (1 - \sqrt{2} \cdot m) \cdot r \cdot |\lambda|$, then the complex equation f(z) = 0 has a unique solution z^* in the closed disc $B(z_0, r) \subset \mathbb{C}$ and z^* can be obtained as the limit of the sequence $\{z_k\}_{k\in\mathbb{N}}$, given by the iterative formula of the complex parallel method $z_{k+1} = z_k - \frac{1}{\lambda} \cdot f(z_k), k \in \mathbb{N}$.

Conclusion 5. Using the transformation of complex chord method, the complex equation f(z) = 0 is equivalent with the complex equation $z - f(z) \cdot \frac{z-a}{f(z)-f(a)} = z$, where $a \in \mathbb{C}$ is a fixed complex number, $z \neq a$ and $f(z) \neq f(a)$ for $z \neq a$. We can consider the complex iterative function $\phi(z) =$

 $z - f(z) \cdot \frac{z-a}{f(z)-f(a)}$, where $a, z \in \mathbb{C}, z \neq a$, and $f(z) \neq f(a)$ for $z \neq a$, the complex variant of the chord method. The condition $f(a) \neq 0$ implies for $z \neq a$ that $\phi(z) \neq a$, too. Indeed, from equality $\phi(z) = a$ we get $z - f(z) \cdot \frac{z-a}{f(z) - f(a)} = a$, which means that $(z-a) \cdot \frac{f(a)}{f(z)-f(a)} = 0$. Consequently, from the condition $f(a) \neq 0$ we can deduce z = a.Now we apply theorem 4 for the iterative function ϕ and we obtain the following result for the function f: if the complex function $f: B(z_0, r) \to \mathbb{C}$ is a holomorphic function on $B(z_0, r)$, with $z_0 \in \mathbb{C}$ and r > 0, and $a \in B(z_0, r)$ is a fixed complex number such that $f(a) \neq 0$ and for every $z \in B(z_0, r) - \{a\}$ we have $f(z) \neq f(a)$, $\frac{|f(a)| |f(a) - f(z) + f'(z) \cdot (z-a)|}{|f(z) - f(a)|^2} \leq m < \frac{\sqrt{2}}{2} \text{ for every}$ $z \in B(z_0, r) - \{a\}, and \left| \frac{(z_0 - a)f(z_0)}{f(z_0) - f(a)} \right| \le (1 - \sqrt{2} \cdot m) \cdot r$ with $z_0 \neq a$, then the complex equation f(z) = 0 has a unique solution z^* in the closed disc $B(z_0, r) \subset \mathbb{C}$ and z^* can be obtained as the limit of the sequence $\{z_k\}_{k\in\mathbb{N}}$, given by the iterative formula of the complex chord method $z_{k+1} = z_k - f(z_k) \cdot \frac{z_k - a}{f(z_k) - f(a)}, k \in \mathbb{N}.$

Conclusion 6. Using the transformation of complex Steffensen's method, the complex equation f(z) = 0 is equivalent with the complex equation $z - \frac{f^2(z)}{f(z+f(z))-f(z)} = z$. We can consider the complex iterative function $\phi(z) = z - \frac{f^2(z)}{f(z+f(z))-f(z)}$, the complex variant of the Steffensen's method. Now we apply theorem 4 for the iterative function ϕ and we obtain the following result for the function f: if the complex function $f : B(z_0, r) \to \mathbb{C}$ is a holomorphic function on $B(z_0, r)$, with $z_0 \in \mathbb{C}$ and r > 0,

$$\begin{aligned} &|1 - \{2f(z) \cdot f'(z)[f(z+f(z)) - f(z)] \\ - & f^2(z) \cdot [f'(z+f(z)) \cdot (1+f'(z)) - f'(z)] \} \\ \vdots & [f(z+f(z)) - f(z)]^2 | \\ = & |1 - \{f^2(z) \cdot f'(z) + 2f(z) \cdot f'(z) \cdot f(z+f(z)) \\ - & f^2(z) \cdot f'(z+f(z)) \cdot (1+f'(z)) \} \\ \vdots & [f(z+f(z)) - f(z)]^2 | \le m < \frac{\sqrt{2}}{2} \end{aligned}$$

for every $z \in B(z_0, r)$, and $\left|\frac{f^2(z_0)}{f(z_0+f(z_0))-f(z_0)}\right| \leq (1-\sqrt{2}\cdot m)\cdot r$, then the complex equation f(z) = 0has a unique solution z^* in the closed disc $B(z_0, r) \subset \mathbb{C}$ and z^* can be obtained as the limit of the sequence $\{z_k\}_{k\in\mathbb{N}}$, given by the iterative formula of the complex Steffensen's method $z_{k+1} = z_k - \frac{f^2(z_k)}{f(z_k+f(z_k))-f(z_k)}, k \in \mathbb{N}$.

Conclusion 7. The equation $z^n - a = 0$, where $a \in$ \mathbb{C}^* is a fixed complex number and $n \in \mathbb{N}, n \geq 2$ is a fixed natural number, is equivalent with the complex equation $\frac{1}{2} \cdot (z + \frac{a}{z^{n-1}}) = z, z \in \mathbb{C}^*$. We can consider the complex iterative function $\phi(z) = \frac{1}{2} \cdot (z + \frac{a}{z^{n-1}})$. Now we apply theorem 4 for the iterative function ϕ and we obtain the following result: if we fix $z_0 \in \mathbb{C}$ and r > 0 such that $0 \notin B(z_0, r)$ and $|1 - \frac{(n-1)a}{z^n}| \le 2 \cdot m < \sqrt{2}$ for every $z \in B(z_0, r)$, and $|z_0 - \frac{a}{z_0^{n-1}}| \le 2 \cdot m < \sqrt{2}$ $2 \cdot (1 - \sqrt{2} \cdot m) \cdot r$, then the complex sequence $\{z_k\}_{k \in \mathbb{N}}$, given by the iterative formula $z_{k+1} = \frac{1}{2} \cdot (z_k + \frac{a}{z_k^{n-1}})$ is convergent and tends to $\sqrt[n]{a}$, the complex nth root of $a \in \mathbb{C}^*$. We mention the particular case for n = 2: if we fix $z_0 \in \mathbb{C}$ and r > 0 such that $0 \notin B(z_0, r)$, and $|1 - \frac{a}{z^2}| \leq 2 \cdot m < \sqrt{2}$ for every $z \in B(z_0, r)$, and $|z_0 - \frac{a}{z_0}| \leq 2 \cdot (1 - \sqrt{2} \cdot m) \cdot r$, then the complex sequence $\{z_k\}_{k\in\mathbb{N}}$, given by the iterative formula $z_{k+1} = \frac{1}{2}$. $(z_k + \frac{a}{z_k})$ is convergent and tends to \sqrt{a} , the complex square root of $a \in \mathbb{C}^*$.

References

- E. A. Volkov, Numerical Methods, Publishing Company MIR, Moscow, 1986.
- [2] Béla Finta, Curs de analiză numerică, Universitatea "Petru Maior", Tg Mures, 2004.
- [3] J. Cl. Evard and F. Jafari, A Complex Rolle's Theorem, Amer. Math. Monthly 99(1992), 858-861.
- [4] Árpád Száz, A Cauchy Mean Value Theorem for Complex Functions, Math. Student 64(1995), 125-127.