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Abstract

Epidemiological models play an important role in the study of diseases. These
models belong to population dynamics models and can be characterized with
differential equations. In this paper we focus our attention on two epidemic
models for malaria spreading, namely Ross-, and extended Ross model. As
both the continous and the corresponding numerical models should preserve the
basic qualitative properties of the phenomenon, we paid special attention to
its examination, and proved their invariance with reference to the data set.
Moreover, existence and uniqueness of equilibrium points for both models of
malaria are considered. We demonstrate the theoritical results with numerical
simulations.
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1 Introduction and motivation
People of all eras had to cope with different diseases
and despite of modern science today’s population is
no exception. Some of these diseases can decrease
the size of the population dramatically. Therefore,
it is extremely important to understand the mecha-
nism of epidemics and try to prevent their outbreak
and propagation.

Malaria is widespread in the tropical and sub-
tropical regions, includes Asia, Sub-Saharan Africa
and Latin America. It still occurs more than 200
million cases worldwide of which one-fifth ends
in death. Since there is no effective vaccine, it
is crucial to study the host-parasite biology and
describe an effective mathematical model to its
propagation.

Every mathematical model needs to reflect the
main characteristic of the phenomenon. Since the
unknown functions in the differential equations
which describe the epidemic propagation give the
number or the density of the different individuals,
a reliable model could have only a non-negative
solution. Therefore, one of the main requirements
is the non-negativity property, which means that if
the initial data are non-negative, then the solution
of the models is also non-negative. In this paper we
paid our attention to the analysis of this question
for two ODE models for malaria propagation.
Furthermore, the existence and uniqueness of the
stationary points of both models are examined,
which can give answer of how many infected people
will be during the epidemic.
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The basis of epidemic models is the so-called SIR
model, which was created in 1927 by Kermack and
McKendrick [12]. In this model there are three com-
partments, which are defined as below:

• (S) susceptibles - who have yet to contract the
disease and become infectious,

• (I) infectives - who can pass on the disease to
others,

• (R) removed - who have been infected but can-
not transmit the disease for some reason.

The model has the form of a system of ordinary
differential equations:

dS(t)

dt
= −aS(t)I(t)

dI(t)

dt
= aS(t)I(t)− bI(t)

dR(t)

dt
= bI(t),

(1)

where S(t), I(t) and R(t) are the number of suscep-
tible, infective and recovered individuals as a func-
tion of time t. Contact rate a and recovery rate
b are positive known parameters. It is easy to see
that there is no vital dynamics in this model, and
the movement between the three groups is one-way,
which means that the recovered individuals do not
become susceptible again. It is usually depicted as
below

S −→ I −→ R

Some infections do not give immunity upon re-
covery from infection, and individuals become sus-
ceptible again. These are the so-called SIS models.

S −→ I −→ S

In other infections there is a significant incubation
period during which the individual has been in-
fected but is not yet infectious themselves. During
this period the individuals are in the exposed (E)
state, and this leads to the SEIR models.

S −→ E −→ I −→ R

This paper is organised as follows. In Section 2
we introduce two mathematical models for malaria
transmission including Ross and extended Ross
model. Moreover, density preservation is proven
for Ross model. In Section 3 we investigate the
qualitative properties of the extended Ross model
in detail. Section 4 addresses equilibrium points of
both models and finally, in Section 5 we demon-
strate the theoritical results on numerical examples.

2 Dynamics of malaria trans-
mission

Models mentioned in Section 1 describe the direct
type of epidemic propagation, which means that for
the spread of the disease direct physical connection
is required.
The most typical example for indirect type of epi-
demic propagation is malaria. In this case phys-
ical connection is not required directly between
the infected individuals, rather the disease spreads
through a vector. Hence this model usually called
as host-vector-host model.

Ross model
Ronald Ross highlighted the role of mosquitoes in
the spread of malaria and introduced a differential
equation system to describe the dynamics of malaria
transmission at a population level.
In the construction of the model the size of hu-
man and mosquito population considered as con-
stant [11]. Both population is divided into two sub-
groups, including susceptibles and infected. In the
human population the infected class returns to the
susceptible again, unlike in the mosquito population
where the mosquitoes dies due to their short life-
time. Therefore the Ross model can be considered
as a modification of the SIR model, for humans it
is an SIS model and SI model for mosquitoes. The
movement between the compartments:

Ross model is formulated as follows:

dSh

dt
= rIh(t)− abmIm(t)(1− Ih(t))

dIh
dt

= abmIm(t)(1− Ih(t))− rIh(t)

dSm

dt
= µIm(t)− acIh(t)(1− Im(t))

dIm
dt

= acIh(t)(1− Im(t))− µIm(t)

(2)

with given positive initial values which naturally
satisfy the following conditions:{

Sh(0) + Ih(0) = 1

Sm(0) + Im(0) = 1
(3)

Here Sh(t) and Sm(t) denotes the density of
susceptible humans and mosquitoes at time t. The
densitiy of infected humans and mosquitoes at
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time t is characterized as Ih(t) and Im(t). In (2) -
(3), Sh(t) + Ih(t) = 1 for all t, and for mosquitoes
Sm(t) + Im(t) = 1 for all t, too.
Parameter a yields the number of bites per unit
time, b is the proportion of bites that produce
infection in humans, c represents the proportion
of those bites by which a susceptible mosquito
becomes infected. Parameter m is the ratio of
number of female mosquitoes to that of humans.
The parameter r is the average recovery rate of
humans, and µ is the death rate of the vectors.

System (2) can be reduced as below:


dIh
dt

= abmIm(t)(1− Ih(t))− rIh(t)

dIm
dt

= acIh(t)(1− Im(t))− µIm(t)

(4)

With initial conditions (3) system (4) is a
two-dimensional Cauchy problem. As the solution
of system (4) is density, it should belong to interval
[0, 1]. We will prove that if Ih(0) and Im(0) are
in interval [0, 1], the solution of system (4) is in
[0, 1], too. This property is referred as density
preservation (DP) property [13].

Theorem 1. Ross model (4) possesses DP prop-
erty.

Proof. Assume that Ih(0), Im(0) ∈ [0, 1] and

Ω := {(Ih(t), Im(t)) : 0 ≤ Ih(t), Im(t) ≤ 1}. (5)

If t denotes the time-instant when the trajectories
reach the boundary, the sign of the derivatives will
be worth discussing. If we suppose Im(t) ≥ 0 and
Ih(t) = 0 from the first equation of system (4) we
get İh(t) ≤ 0.
By similar reasoning for the second equation of sys-
tem (4), the statement proves that set Ω is posi-
tively invariant with respect to Ross model (4).

Despite that the Ross model possesses DP prop-
erty, it has some shortcomings, too.

• As the total population is constant, the birth
and mortality are assumed to be equal, i.e.
there is no vital-dynamics.

• In reality there is a latency period which means
that the transition from the susceptible state to
the infected state is not direct. There is a state
between the two compartments, the so-called
exposed state.

• Since the Ross-model is based on SIS model
for humans, there is no recovery state (R(t)).

Extended Ross model
To eliminate the above listed shortcomings we in-
troduce another model for the malaria propagation,
and we call it extended malaria model (c.f. [3]).
To follow the standard notation a new group has
to be introduced: the class of exposed (E), those
individuals whom are infected but not able to pass
on the infection to others.
In general we divide the human population into four
groups: susceptible humans, exposed humans, in-
fectious humans and recovered humans. Unlike hu-
man population, the mosquito population is divided
into three subclasses. There is no recovered class
due to their short life-cycle.
By some biological interpretations coming from [3]
the progress of the disease can be described with the
below seven-dimensional system of ordinary differ-
ential equations:

dSh(t)

dt
= Λh − bβhSh(t)Im(t)

1 + νhIm(t)
− µhSh(t) + ωRh(t)

dEh(t)

dt
=

bβhSh(t)Im(t)

1 + νhIm(t)
− (αh + µh)Eh(t)

dIh(t)

dt
= αhEh(t)− (r + µh + δh)Ih(t)

dRh(t)

dt
= rIh(t)− (µh + ω)Rh(t)

dSm(t)

dt
= Λm − bβmSm(t)Ih(t)

1 + νmIh(t)
− µmSm(t)

dEm(t)

dt
=

bβmSm(t)Ih(t)

1 + νmIh(t)
− (αm + µm)Em(t)

dIm(t)

dt
= αmEm(t)− (µm + δm)Ih(t),

(6)
with the following initial conditions{
Sh(0) = S0h, Ih(0) = I0h, Eh(0) = E0h, Rh(0) = R0h,

Sm(0) = S0m, Em(0) = E0m, Im(0) = I0m.

(7)
Here function Sh(t) denotes the number of sus-

ceptible humans at time t, the number of humans
exposed to malaria infection at time t is signified by
Eh(t) and the number of infectious and recovered
humans at time t are characterized by Ih(t) and
Rh(t). The variables for number of mosquitoes in
the three compartments can be considered similarly.

Unlike Ross’s model, this model takes into
account the population dynamics by considering
the birth rate and the death rate. In the extended
model we assume that all children are born healthy,
so the birth number (Λh,Λm) is only enters into
the class of susceptibles (Sh, Sm).
Since malaria has a 2-4 weeks latent period, when
the parasite is injected into the blood system
with some probability (βh), the susceptible human
moves to the exposed class Eh(t). Exposed humans
are not able to transmitting the disease to the
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susceptible mosquitoes as the parasites are in
asexual stages [7].
When the incubation period is over the exposed
human is progressed to the infectious state with
some αh rate. Then the individual in this class
will either die or recover and moves to the recov-
ered (Rh) class. The recovered human has some
immunity to the disease, however after a few year
the individual loses the immunity and become
susceptible again.
As the model distinguish natural and disease
induced death rate, every class is decreased by
natural death rate µh, and only the infectious class
is decreased by disease induced death rate δh.

In a similar way, when a susceptible mosquito
Sm(t) bites an infected human, the parasite enters
the mosquito with some probability βm and moves
to the exposed class Em(t). After a given time
it becomes infectious Im. Mosquitoes leave the
population by natural death rate µm or disease
induced death rate δm.

Ratio 1

1 + νhIm(t)
denotes a saturating feature

that inhibits the force of infection from infectious
mosquitoes to susceptible humans. In other
words νh ∈ [0, 1] is the proportion of antibodies
produced by human in response the incidence of
antigens produced by infectious mosquito. This
interpretation can be used for mosquitoes similarly,
whereas νm ∈ [0, 1] is the rate at which antibodies
are produced against the antigens contacted from
infectious humans.

In this model the movement between the com-
partments for human population is SEIRS, and
for mosquitoes the movement is SEI.

Figure 1: Mechanism in the extennded model. Colour
bar indicates the density of malaria parasites in hosts /
vectors in the different compartments (0− 100%) [11].

3 Qualitative analysis of the
extended model

We consider invariancy property of the extended
malaria model.

Theorem 2. Assume that Λh,Λm > 0 and all ini-
tial values in (7) are positive. Then the solution of
the model (6)-(7) is positive for all t.

Proof. We will prove the above theorem indirectly.
Suppose that there exists t < +∞ where our the-
orem is not true, which means that there exists at
least one component which is equal to zero in that
point. Let t? be the infimum of such values. Then
every component is positive on [0, t?), and there ex-
ists at least one component which is equal to zero in
t?. (This is due to the continuity of the functions.)
In the sequel we show that no one of components
can have this property.

1. Suppose that Sh has this feature, i.e., Sh(t
?) =

0.
Then the other components are non-negative
on [0, t?], that is the functions Eh(t), Ih(t),
Rh(t), Sm(t), Em(t), Im(t) are non-negative on
this interval. Let us consider the first equation
in (6) at the point t = t?. We get

S′
h(t

?) = Λh − bβhSh(t
?)Im(t?)

1 + νhIm(t?)
− µhSh(t

?)+

+ωRh(t
?) = Λh + ωRh(t

?) > 0.

This means that Sh(t) is strictly monotoni-
cally increasing at the point t = t?. Therefore
Sh(t) < Sh(t

?) for all t ∈ (t? − ε, t?) with some
ε > 0. As Sh(t

?) = 0 we get that Sh(t) < 0 on
(t? − ε, t?), which is a contradiction.

2. Assume that Eh has the above feature, i.e.,
Eh(t

?) = 0. Multiplying both sides of the sec-
ond equation in (6) with e(αh+µh)t, we obtain

e(αh+µh)tE′
h(t) + e(αh+µh)t(αh + µh)Eh(t) =

= e(αh+µh)t
bβhSh(t)Im(t)

1 + νhIm(t)
.

Here on the left side stands the derivative of
the function e(αh+µh)tEh(t). Hence, integrat-
ing this equality on the interval [0, t] we get

e(αh+µh)tEh(t)− Eh(0) =

=

∫ t

0

e(αh+µh)s
bβhSh(s)Im(s)

1 + νhIm(s)
ds.

Putting t = t? this results in the relation

Eh(t
?) = e−(αh+µh)t

?

Eh(0)+

+

∫ t?

0

e−(αh+µh)(t
?−s) bβhSh(s)Im(s)

1 + νhIm(s)
ds.

Hence Eh(t
?) > 0, which yields a contradiction.

3. Assume now that Ih has the above feature, i.e.,
Ih(t

?) = 0. Then the third equation in (6) at
the point t = t? results in the following:

I ′h(t
?) = αEh(t

?)− (r + µh + δh)Ih(t
?) =

= αEh(t
?) > 0,

which means that Ih(t) is strictly monotoni-
cally increasing in t?. Hence, as in the first
case, for Sh, we get again a contradiction.
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4. Similarly we assume the above feature for the
function Rh(t) as well. Then

R′
h(t

?) = rIh(t
?)−(µh+ω)Rh(t

?) = rIh(t
?) > 0,

i.e., Rh(t) is positive for all t ∈ [0, t?], which
contradicts the property Rh(t

?) = 0.

For mosquitoes the proof is carried out analogously.

5 Suppose that Sm(t) has the above feature, i.e.,
Sm(t?) = 0, and all the other components are
non-negative at at the point t = t?. Then the
the fifth equation in (6) at the point t = t?

results in the relation

S′
m(t?) = Λm − bβmSm(t?)Ih(t

?)

1 + νmIh(t?)
− µmSm(t?) =

= Λm > 0.

Hence, as in the case for Sh(t), we got a con-
tradiction.

6 Likewise for Em(t), by multiplication both
sides of the corresponding equation by
e(αm+µm)t, and then integrating on [0, t], and
substituting t = t?, we obtain

e(αm+µm)t?Em(t?)− Em(0) =

=

∫ t?

0

e(αm+µm)t? bβmSm(s)Ih(s)

1 + νmIh(s)
ds.

Hence

Em(t?) = e−(αm+µm)t?Em(0)+

+

∫ t?

0

e−(αm+µm)(t?−s) bβmSm(s)Ih(s)

1 + νmIh(s)
ds.

This means that E′
m(t?) > 0, which is the re-

quired contradiction.

7 Finally, for Im(t) we have

I ′m(t?) = αEm(t?)− (µm + δm)Im(t?) =

= αEm(t?) > 0,

therefore Im(t?) > 0, which is a contradiction.

These steps prove that there is no such t? where
any of the components turns into zero. Since at
the initial point the components are positive, due
to the continuity of the functions every component
is positive for all t.

In theorem 2 we have proved the positivity of the
solution, which means the model is bounded from
below. In the following we consider its boundness
from above.
Let Vh denote the total number of humans, i.e.

Vh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t). (8)

Similarly, for the mosquitoes we define

Vm(t) = Sm(t) + Em(t) + Im(t). (9)

First we formulate the upper bound to Vh.

Theorem 3. Suppose that at the initial time t =
0 the total population number is not equal with
number Λh

µh
. Then the solution of the extended

Ross model (6) − (7) is bounded from above by

max

(
Vh(0),

Λh

µh

)
at any time t.

Proof. Summing up the equations in (6) and using
the definition of Vh(t), we get

V ′
h(t) = Λh − µhVh(t)− δhIh(t).

Hence, rearranging and multiplying both sides by
eµht, we obtain

V ′
h(t) · eµht + µhe

µhtVh(t) = (Λh − δhIh(t))e
µht.

We notice that on the left side stands the deriva-
tive of Vh(t) · eµht. Hence, integrating both sides
from 0 to t, we get

Vh(t)e
µht − Vh(0) =

∫ t

0

(Λh − Ih(s))e
µhsds.

Hence

Vh(t) = e−µhtVh(0) + e−µht

∫ t

0

(Λh − Ih(s))e
µhsds.

(10)
Since

e−µht

∫ t

0

Λhe
µhsds = e−µhtΛh

1

µh
(eµht − 1) =

=
Λh

µh
(1− e−µht),

and according to the Theorem 2, the function Ih(t)
is positive. From (10) we get the estimate

Vh(t) ≤ e−µhtVh(0) +
Λh

µh

[
1− e−µht

]
=

= e−µht

[
Vh(0)−

Λh

µh

]
+

Λh

µh
. (11)

Introduce the below notation for the right side

g(t) = e−µht

[
Vh(0)−

Λh

µh

]
+

Λh

µh
.

1. The first case is when

Vh(0) <
Λh

µh
. (12)

An easy computation shows that g′(t) > 0,
which means that g(t) is a monotonically in-
creasing function. Therefore
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g(t) ≤ lim
t→∞

g(t) =
Λh

µh
. (13)

Hence, (11) and (13) together imply the re-
quired estimate

Vh(t) <
Λh

µh

for any t > 0 under assumption (12).

2. If
Vh(0) >

Λh

µh
, (14)

then g′(t) = −µhe
−µht

[
Vh(0)−

Λh

µh

]
< 0. It

means that g(t) is a monotonically decreasing
function. Therefore

sup g(t) = g(0) =

= e−µh·0
(
Vh(0)−

Λh

µh

)
+

Λh

µh
= Vh(0). (15)

Hence, (11) and (15) together imply the re-
quired estimate

Vh(t) ≤ Vh(0)

for any t > 0 under assumption (14).

The first and the second case together implies
Theorem 3.

The statement for Vm is as follows.

Theorem 4. Suppose that at the initial time t = 0
the total population number for the mosquitoes is
not equal with number Λm

µm
. The solution of the

extended Ross model (6)−(7) is bounded from above

by max

(
Vm(0),

Λm

µm

)
at any time t.

Proof. Since the proof is carried out analogously to
the proof of Theorem 3, for brevity we omit it.

Theorems 2, 3 and 4 imply that each
component in the extended Ross model is

on the interval
(
0,max

{
Vh(0),

Λh

µh

})
and(

0,max
{
Vm(0),

Λm

µm

})
, respectively.

4 Equilibrium points
The most important question during an epidemic
is that how many person will be infected and when
the spread of the disease will stop. This can be an-
swered by finding the stationary points of the conti-
nous dynamical system which describe the epidemic
model.

The stationary point of the Ross model (4) has to
satisfies the following:{

abmI∗m(1− I∗h)− rI∗h = 0

acI∗h(1− I∗m)− µI∗m = 0.
(16)

After solving the above algebraic system we get two
equilibrium points:

(I∗h, I
∗
m)1 = (0, 0) and

(I∗h, I
∗
m)2 =

(
a2bcm− µr

a2bcm+ acr
,

a2bcm− µr

a2bcm+ abmµ

)
.

(17)

Point (I∗h, I
∗
m)1 is disease-free stationary point and

point (I∗h, I
∗
m)2 is endemic stationary point for

system (4).

To get the equilibrium point of the extended
model (6) let’s denote γ1 := bβh and γ2 :=
bβm in system (6) as simplification. If there
exists a stationary point X ≥ 0 where X =
(Sh, Eh, Ih, Rh, Sm, Em, Im) ∈ R7, it satisfies the
following seven dimensional algebraic system:

Λh − γ1S
∗
hI

∗
m

1 + νhI∗m
− µhS

∗
h + ωR∗

h = 0

γ1S
∗
hI

∗
m

1 + νhI∗m
− (αh + µh)E

∗
h = 0

αhE
∗
h − (r + µh + δh)I

∗
h = 0

rI∗h − (µh + ω)R∗
h = 0

Λm − γ2S
∗
mI∗h

1 + νmI∗h
− µmS∗

m = 0

γ2S
∗
mI∗h

1 + νmI∗h
− (αm + µm)E∗

m = 0

αmE∗
m − (µm + δm)I∗h = 0.

(18)

From system (18) we get the following relations
for the stationary points:

E∗
h =

(r + µh + δh)I
∗
h

αh
(19)

R∗
h =

rI∗h
µh + w

(20)

S∗
m =

Λm(1 + νmI∗h)

γ2I∗h + µm(1 + νmI∗h)
(21)

E∗
m =

γ2S
∗
mI∗h

(1 + νmI∗h)(αm + µm)
(22)

I∗m =
αmE∗

m

µm + δm
(23)

S∗
h =

(Λh + wR∗
h)(1 + νhI

∗
m)

γ1I∗m + (1 + νhI∗m)µh
(24)

E∗
h =

γ1S
∗
hI

∗
m

(1 + νhI∗m)(αh + µh)
(25)
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and I∗h is a solution of a quadratic equation given
by

(I∗h)
2 − µhµmΛh(µh + w)(R2

0 − 1)

φ
I∗h = 0. (26)

here we have used the notation

φ = wµmµhrR
2
0(
(αh + µh)(r + µh + δh)

αhr
− 1)

+µhγ1ΛhµmC+(µh+w)Λhµh(γ2+µmνm+νhµmC)

(27)

in which

C =
γ2αmΛm

µm(δm + µm)(αm + µm)
(28)

and

R0 =

=

√
γ1γ2αhαmΛhΛm

µhµm(αh + µh)(r + µh + δh)(δm + µm)(αm + µm)

(29)

R0 is called the basic reproduction ratio defined
as the expected number of new cases of infection
caused by a typical infected individual in a pop-
ulation of susceptibles only which is a criterion
to determine a phenomenon is either disease-free,
R0 < 1, or endemic, R0 > 1. To decide about this
question we use linearization at disease-free station-
ary point ignoring the fact that the density of sus-
ceptibles decreases due to the infection process. The
basic reproduction ratio is charcterized as a spectral
radius of the next generation matrix of the model
[9,10].

In absance of the epidemic in which the basic re-
production ratio R0 ≤ 1, I∗h = 0 is a unique nonneg-
ative solution for quadratic eqaution (25) and the
other solution is negative. Therefore,

X∗ = (S∗
h, E

∗
h, I

∗
h, R

∗
h, S

∗
m, E∗

m, I∗m) =

= (
Λh

µh
, 0, 0, 0,

Λm

µm
, 0, 0) (30)

is a unique posistive disease-free stationary point for
system (6). Moreover, once the epidemic occurs,
R0 > 1, there exist two nonnegative solutions for
(25) given by I∗h = 0 and

I∗∗h =
µhµmΛh(µh + w)(R2

0 − 1)

φ
(31)

hence,

X∗∗ = (S∗∗
h , E∗∗

h , I∗∗h , R∗∗
h , S∗∗

m , E∗∗
m , I∗∗m ) (32)

in which all the components are occupied and
positive is called endemic stationary point for sys-
tem (6).
Theorem 5. For system (6), if R0 < 1, there is
a unique nonnegative disease-free stationary point
and if R0 > 1, there exist two nonnegative sta-
tioanry points.

5 Numerical simulations
In Sections 3 and 4 we have shown that the
solutions of Ross model (4) are in [0, 1], and
the solutions of the extended Ross model (6)

is on the interval
(
0,max

{
Vh(0),

Λh

µh

})
and(

0,max
{
Vm(0),

Λm

µm

})
, respectively. In this sec-

tion we check it numerically.
For the numerical solution we used one of the sim-
plest explicit method, the Explicit Euler method.
Parameters are set according to Table 1 and 2, re-
spectively.
In both simulations the solutions remain in the
given domains as t → ∞.

Figure 2: * denotes the density of infected humans and
- visualizes the density of infected mosquitoes in Ross
model (4).
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Figure 3: Number of humans in the four compartments
in the extended Ross model (6).
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Figure 4: Number of mosquitoes in each compartments
in the extended Ross model (6).

6 Summary
Since the solutions of Ross model are densities, it is
proved that they are positively invariant in interval
[0,1]. This results are visulalized numerically in
Fig.2 in which the density of infected human and
mosquito increases to reach the stationary points.
Moreover, extended Ross model is considered
qualitatively invariant in(
0,max

{
Vh(0),

Λh

µh

})
and(

0,max
{
Vm(0),

Λm

µm

})
for human and mosquito

population respectively denoting in Fig. 3 and 4
by numeric simulation.

This paper proves that both models preserve
the basic qualitative properties of the phenomenon.
Since the Extended Ross model eliminates the
shortcomings of the Ross model by considering the
latency period, the vital dynamics and the recovery
state, it is worth to use for simulate the propagation
of malaria. That simulation can help to predict the
peak of the epidemic and, as the stationary points
of the continous models are given in this paper, an
easy computation can give where the number of the
infected and recovered individual tend during the
epidemic.

Table 1: Values of the parameters in Fig.2.

Parameter Value
a 0.4
m 0.6
b 0.3
c 0.5
r 0.002
µ 0.2

Table 2: Values of the parameters in Fig.3. and Fig.4.

Sh(0) = 100 Eh(0) = 20
Ih(0) = 10 Rh(0) = 0
Sm(0) = 30 Em(0) = 20
Im(0) = 30

Λh = 0.0004 Λm = 0.07
βh = 0.2 βm = 0.09

µh = 0.00006 µm = 0.067
δh = 0.001 δm = 0.01
αh = 0.06 αm = 0.055
r = 0.04 ω = 0.0014
b = 0.15 νh = 0.7
νm = 0.3
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