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Abstract

The purpose of this paper is to give some extensions of Steffensen’s method to the
space Rn.
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1 Introduction

It is known the following result for iterative func-
tions on the real line, see for example [1] or [2]

Theorem 1. (general theorem for real iterative func-
tions) If φ : J → R is derivable on the interval
J = [x0 − δ, x0 + δ], δ > 0 and the derivative func-
tion φ′ satisfies the inequality 0 ≤ |φ′(x)| ≤ m < 1
for every x ∈ J and the point x1 = φ(x0) verifies the
inequality |x1 − x0| ≤ (1−m)δ, then:

- we can form the sequence {xk}k∈N with the iter-
ative rule xk+1 = φ(xk), k ∈ N, such that for
every k ∈ N we have xk ∈ J ;

- there exists limk→∞ xk = x∗ ∈ J ;

- x∗ is the unique solution of the equation φ(x) =
x in the interval J.

In [3] we showed a complex variant of this theorem
using [4] and [5]:

Theorem 2. ( general theorem for complex iterative
functions ) If φ : B(z0, r)→ C is a holomorphic func-
tion on the closed disc B(z0, r) ⊂ C, z0 ∈ C, r > 0,
such that the derivative function φ′ satisfies the in-
equality 0 ≤ |φ′(z)| ≤ m <

√
2
2 for every z ∈

B(z0, r) and the point z1 = φ(z0) verifies the inequal-
ity |z1 − z0| ≤ (1−

√
2 ·m) · r, then:

- we can form the sequence {zk}k∈N with the iter-
ative rule zk+1 = φ(zk), k ∈ N, such that for
every k ∈ N we have zk ∈ B(z0, r);

- there exists the limit of the sequence {zk}k∈N and
limk→∞ zk = z∗ ∈ B(z0, r);

- z∗ is the unique solution of the equation φ(z) = z
in the closed disc B(z0, r).

Using theorem 2 in [3] we gave some applications
for nonlinear complex equations. In order to solve
the complex equation f(z) = 0 we used the follow-
ing transformations: translation, translation and ho-
mothety, the Newton’s method in complex case and
we builded the complex version of parallel, chord and
Steffensen’s method.

In [6] we showed extensions of the above men-
tioned methods to the space Rn in order to solve non-
linear system of equations. At the same time we gave
a theoretical result for the convergence of these meth-
ods.

2 Main part

Let us consider the euclidian norm || · || on the
space Rn and the closed sphere B(w, r) = {x ∈
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Rn/||x − w|| ≤ r} in the space Rn, with center w
and radius r > 0. First we remember the Banach fixed
point theorem in the case of the closed sphereB(w, r) :

Theorem 3. Let φ : B(w, r) → B(w, r) be a con-
traction, i.e. there exists the constant α ∈ [0, 1)
such that ||φ(x) − φ(y)|| ≤ α · ||x − y|| for every
x, y ∈ B(w, r). Then the function φ has a unique
fixed point in B(w, r), which can be obtained as the
limit of the sequence {xk}k∈N given by the iteration
xk+1 = φ(xk), k ∈ N, for every x0 ∈ B(w, r).

Proof. Because B(w, r) ⊂ Rn is a closed sphere in
the space Rn, will be a Banach space, too. Now we
apply the Banach fixed point theorem for the function
φ : B(w, r)→ B(w, r).

We say that the function φ : B(w, r) → Rn is
differentiable function on the closed sphere B(w, r),
if it is differentiable in every point x ∈ B(w, r). If
the point x is a boundary point of the closed sphere
B(w, r), then we suppose that the function φ is de-
fined on a small open disc with center x and it is dif-
ferentiable in x.

Theorem 4. Let φ : B(w, r)→ Rn be a continuously
differentiable function on the closed sphere B(w, r),
and x ∈ B(w, r), h ∈ Rn such that x+ h ∈ B(w, r).
If there exists M ≥ 0 positive real number such that
for every u ∈ [x, x+h] = {x+t·h/t ∈ [0, 1]} ( the line
segment [x, x+ h] ⊂ Rn with endpoints x and x+ h )
we have ||D(φ)(u)|| ≤M, then ||φ(x+h)−φ(x)|| ≤
M · ||h||.

Proof. See for example [7].

Theorem 5. If the euclidian norm of D(φ)(u) is
bounded on the closed disc B(w, r) ⊂ Rn, i.e. there
exists M > 0 real number such that ||D(φ)(u)|| ≤M
for every u ∈ B(w, r), then ||φ(x) − φ(y)|| ≤ M ·
||x− y|| for every x, y ∈ B(w, r).

Proof. It is immediately from the previous theorem 4.

Theorem 6. ( general theorem for real n dimen-
sional iterative functions) If φ : B(x0, r) → Rn is
a continuously differentiable function on the closed
sphere B(x0, r), x0 ∈ Rn, r > 0, such that the dif-
ferential function D(φ) satisfies the inequality 0 ≤
||D(φ)(u)|| ≤M < 1 for every u ∈ B(x0, r) and the
point x1 = φ(x0) verifies the inequality ||x1 − x0|| ≤
(1−M) · r, then:

- we can form the sequence {xk}k∈N with the iter-
ative rule xk+1 = φ(xk), k ∈ N, such that for
every k ∈ N we have xk ∈ B(x0, r);

- there exists the limit of the sequence {xk}k∈N and
limk→∞ xk = x∗ ∈ B(x0, r);

- x∗ is the unique solution of the equation φ(x) =
x in the closed sphere B(x0, r).

Proof. Using theorem 5 for every x, y ∈ B(x0, r) we
get ||φ(x)−φ(y)|| ≤M · ||x−y||withM < 1, so φ is
a contraction. Also we obtain for every x ∈ B(x0, r)
that ||φ(x)− φ(x0)|| ≤M · ||x− x0||. Now we show
that φ(B(x0, r)) ⊂ B(x0, r), i.e. φ : B(x0, r) →
B(x0, r). Indeed, for every x ∈ B(x0, r) we get
||φ(x)−x0|| = ||φ(x)−φ(x0)+x1−x0|| ≤ ||φ(x)−
φ(x0)||+ ||x1−x0|| ≤M · ||x−x0||+ ||x1−x0|| ≤
M · r + (1 −M) · r = r. Using theorem 3 we finish
this proof.

Let f = (f1, f2, . . . , fn) : D ⊂ Rn → Rn be a
function. We build the real n dimensional Steffensen’s
method in the following way: for every i, j = 1, n let
us consider the functions hij : B(x0, r)→ R,

hij(x) = δij ·
fi(x+ f(x))− fi(x)

fεi(j)(x)
,

where δij ∈ {0, 1} and ε1, ε2, . . . , εn are arbitrary per-
mutations of the set {1, 2, . . . , n} and we define the
matrix type function h(x) = (hij(x))i,j=1,n, where
fj(x) 6= 0 for every j = 1, n. Also we suppose that
the determinant det(h(x)) 6= 0. Using the transfor-
mation of Steffensen’s method, the system of equa-
tions f(x) = 0 is equivalent with the system of equa-
tions x − (h(x))−1 · f(x) = x. We denote with h∗ :
B(x0, r)→ Rn the function h∗(x) = (h(x))−1 ·f(x).
We can consider the iterative function φ(x) = x −
(h(x))−1 · f(x), the real n dimensional variant of the
Steffensen’s method. Now we apply theorem 6 for the
iterative function φ and we obtain the following result
for the function f: if the function f : B(x0, r) → Rn

is a continuously differentiable function on B(x0, r),
with x0 ∈ Rn and r > 0, and det(h(x)) 6= 0 for ev-
ery x ∈ B(x0, r), and ||1(x)−D(h∗)(x)|| ≤ M < 1
for every x ∈ B(x0, r) and ||h∗(x0)|| = ||(h(x0))−1 ·
f(x0)|| ≤ (1 −M) · r, then the system of equations
f(x) = 0 has a unique solution x∗ ∈ B(x0, r) in the
closed disc B(x0, r) ⊂ Rn and x∗ can be obtained
as the limit of the sequence {xk}k∈N, given by the it-
erative formula of the real n dimensional Steffensen’s
method: xk+1 = xk − (h(xk))−1 · f(xk), k ∈ N.

3 Discussion and conclusion

Now if we fix all the constants δij = 1 for every
i, j = 1, n and ε1, ε2, . . . , εn are the identical permu-
tations, then we obtain the result in [6].

Next we consider the case δii = 1 for every i =
1, n, δij = 0 for all i, j = 1, n with i 6= j, and
ε1, ε2, . . . , εn are the identical permutations. This
means that

hii(x) =
fi(x+ f(x))− fi(x)

fi(x)

for i = 1, n and hij(x) = 0 for all i, j = 1, n with
i 6= j. The matrix type function h(x) has the diagonal
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elements

hii(x) =
fi(x+ f(x))− fi(x)

fi(x)

and the other elements there are equal zero. We calcu-
late the invers matrix of the matrix h(x) and we get an
n dimensional matrix whose diagonal elements there
are the expressions

fi(x)

fi(x+ f(x))− fi(x)

and the other elements there are zero. We can conclude

Φ(x) = x− (h(x))−1 · f(x) =

=

(
x1 −

f21 (x)

f1(x+ f(x))− f1(x)
,

x2 −
f22 (x)

f2(x+ f(x))− f2(x)
, . . . ,

xn −
f2n(x)

fn(x+ f(x))− fn(x)

)
.

If we denote

Φ = (Φ1,Φ2, . . . ,Φn) : D ⊂ Rn → Rn,

then we have

Φi(x) = xi −
f2i (x)

fi(x+ f(x))− fi(x)

for i = 1, n. We consider the euclidean norm on Rn,
and we calculate

‖x1 − x0‖ = ‖Φ(x0)− x0‖ =

=

{ n∑
i=1

[
f2i (x0)

fi(x0 + f(x0))− fi(x0)

]2}1/2

.

We can calculate the partial derivatives (Φi)
′
xj

(x) for
all i, j = 1, n, and all these partial derivatives depends
on f. Next we consider

‖DΦ(x)‖ =

{ n∑
i=1

n∑
j=1

[(Φi)
′
xj

(x)]2
}1/2

.

Now we apply theorem 6 for the iterative function Φ
and we obtain the following result for the function f :
if f : B(x0, r) → Rn is a continuously differentiable
function on B(x0, r), where x0 ∈ Rn and r > 0, and{ n∑

i=1

n∑
j=1

[
(Φi)

′
xj

(x)
]2}1/2

≤M < 1

for every x ∈ B(x0, r), and{ n∑
i=1

[ f2i (x0)

fi(x0 + f(x0))− fi(x0)

]2}1/2

≤ (1−M)·r,

then the system of equations f(x) = 0 has a unique so-
lution x∗ ∈ B(x0, r) in the closed discB(x0, r) ⊂ Rn

and x∗ can be obtained like the limit of the sequence
{xk}k∈N, given by the iterative formula of the real n
dimensional Steffensen’s method:

xk+1
i = xki −

f2i (xk)

fi(xk + f(xk))− fi(xk)
,

where i = 1, n and k ∈ N.
If we choose other norms on the space Rn, compat-

ible with the euclidian norm, and we consider the cor-
responding dual, operator norms or compatible dual,
operator norms, we can obtain other similar results.

We can see immediatly for the case n = 1 we reob-
tain the classical Steffensen’s method.

In another paper we will show extensions of the
chord method from the real line to he space Rn.
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