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Abstract

The purpose of this paper is to demonstrate that a Diophantine alge-
braic system has finite number solutions.
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1 Introduction

In [1] we can find the following open question: de-
termine all xk, yk ∈ N such that{

x1 + x2 + x3 = y1 · y2 · y3
y1 + y2 + y3 = x1 · x2 · x3.

(1)

In [2] we showed that this system has finite num-
ber solutions in the set of natural numbers and we
solved this system in algebraic way by hand calcu-
lus and we obtained 97 different solutions in the set
of natural numbers:

(x1, x2, x3, y1, y2, y3) ∈ {(0, 0, 0, 0, 0, 0);
(1, 2, 5, 1, 1, 8); (1, 1, 8, 1, 2, 5); (1, 3, 3, 1, 1, 7);

(1, 1, 7, 1, 3, 3); (2, 2, 2, 1, 1, 6); (1, 1, 6, 2, 2, 2),

(1, 2, 3, 1, 2, 3)}.

In order to obtain all solutions of the system (1) we
permute the values xi, i = 1, 2, 3 and separatelly the
values yi, i = 1, 2, 3, after we combine every permu-
tation of xi, i = 1, 2, 3 with every permutation of

yi, i = 1, 2, 3 and in this way finally we can deduce
all 97 different solutions of (1) in the set of natural
numbers.

Now we announce a direct generalization of this
system: for every fixed n,m ∈ N\{0} determine all
xk, yl ∈ N, k = 1, n, l = 1,m such that{

x1 + x2 + . . .+ xn = y1 · y2 · . . . · ym
y1 + y2 + . . .+ ym = x1 · x2 · . . . · xn.

(2)

We solved this system by hand calculus for n,m ∈
{1, 2, 3} in [3]:

1. if n = m = 1, then we obtain the trivial system
x1 = y1 ∈ N;

2. if n = 1,m = 2, then we find two solutions
(x1, y1, y2) ∈ {(0, 0, 0)}, (4, 2, 2)};

3. if n = 1,m = 3, then we find seven different
solutions of the system:

(x1, y1, y2, y3) ∈ {(0, 0, 0, 0)}, (6, 1, 2, 3),
(6, 1, 3, 2), (6, 2, 1, 3), (6, 2, 3, 1), (6, 3, 1, 2),

(6, 3, 2, 1)};
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4. if n = 2,m = 1 is similar with the case 2;

5. if n = m = 2 we find ten different solutions:

(x1, x2, y1, y2) ∈ {(0, 0, 0, 0)}, (2, 3, 1, 5),
(2, 3, 5, 1), (3, 2, 1, 5), (3, 2, 5, 1), (1, 5, 2, 3),

(1, 5, 3, 2), (5, 1, 2, 3), (5, 1, 3, 2), (2, 2, 2, 2)};

6. if n = 2,m = 3 we have nineteen different so-
lutions of the system:

(x1, x2, y1, y2, y3) ∈ {(0, 0, 0, 0, 0)}, (1, 7, 1, 2, 4),
(1, 7, 1, 4, 2), (1, 7, 2, 1, 4), (1, 7, 2, 4, 1),

(1, 7, 4, 1, 2), (1, 7, 4, 2, 1), (7, 1, 1, 2, 4),

(7, 1, 1, 4, 2), (7, 1, 2, 1, 4), (7, 1, 2, 4, 1),

(7, 1, 4, 1, 2), (7, 1, 4, 2, 1), (2, 4, 1, 1, 6),

(2, 4, 1, 6, 1), (2, 4, 6, 1, 1), (4, 2, 1, 1, 6),

(4, 2, 1, 6, 1), (4, 2, 6, 1, 1)};

7. if n = 3,m = 1 is similar with the case 3;

8. if n = 3,m = 2 is similar with the case 6;

9. if n = 3,m = 3 we have 97 different solutions
presented above.

2 Main part

First of all we present the following results: let us
consider the Diophantine algebraic equation in the
set of natural numbers:

x1 + x2 + . . .+ xn = A · x1 · x2 . . . xn (3)

where xi ∈ N for every i = 1, n are the unknowns
and A ∈ N is a fixed natural number.

Proposition 1. The equation (3) has finite number
solutions in the set of natural numbers for n ≥ 2.

Proof. If A = 0, then x1 + x2 + . . . + xn = 0 with
the banal solution x1 = x2 = . . . = xn = 0.
Next let be A ≥ 1. If there exists i = 1, n such

that xi = 0 then we obtain x1 + x2 + . . . + xn = 0
with the banal solution x1 = x2 = . . . = xn = 0.
So we can suppose for every i = 1, n, that xi ̸= 0.
This means xi ≥ 1 for every i = 1, n. Without loss
of generality we can suppose 1 ≤ x1 ≤ x2 . . . ≤ xn.
By permutation we can obtain all solutions of the
Diophantine algebraic equation (3).
We mention the case n = 1 and from (3) we get

the equation x1 = A · x1. If A = 1, then we have
infinite solutions and if A ≥ 2 we receive one root
x1 = 0.
Next let be n ≥ 2. We have two cases:
a) From xn−1 ≤ n we deduce 1 ≤ x1 ≤ x2 ≤ . . . ≤

xn−1 ≤ n. We can observe that there exist finite
number selections of the unknowns x1, x2, . . . , xn−1

such that 1 ≤ x1 ≤ x2 ≤ . . . ≤ xn−1 ≤ n.

For a fixed selection of the unknowns
x1, x2, . . . , xn−1 such that 1 ≤ x1 ≤ x2 ≤
. . . ≤ xn−1 ≤ n from (3) we obtain an equation
in the unknown xn. We can see immediately that
this equation in the unknown xn is an algebraic
equation of the first degree. Indeed,

x1 + x2 + . . .+ xn−1 = xn · (A · x1 · x2 . . . xn−1 − 1).

If A · x1 · x2 · . . . · xn−1 = 1 then A = x1 = x2 =
. . . = xn−1 = 1 so x1 + x2 + . . .+ xn−1 = n− 1, i.e.
n − 1 = 0, which is a contradiction with n ≥ 2. If
A · x1 · x1 · . . . · xn ̸= 1, then for xn we obtain one
rational solution. We have at most one solution for
xn in the set of natural numbers. Finally we can
conclude that in this case our Diophantine equation
(3) has finite number solutions in the set of natural
numbers.
b) If xn−1 > n results xn−1 ≥ n + 1. We divide

the Diophantine equation (3) with x1 · x2 · . . . · xn

and we get the form

A =
1

x2 · x3 · . . . · xn
+

1

x1 · x3 · . . . · xn
+ . . .+

+
1

x1 · x2 · . . . · xn−3 · xn−1 · ·xn
+

+
1

x1 · x2 · . . . · xn−2 · xn
+

+
1

x1 · x2 · . . . · xn−3 · xn−2 · xn−1
.

But in this case 1 ≤ x1 ≤ x2 ≤ . . . ≤ xn−2 and
n+1 ≤ xn−1 ≤ xn, so we can majorize the right side
of the equation from above taking possible minimal
values for the unknowns:

1 ≤ A ≤ 1

(n+ 1)2
+

1

(n+ 1)2
+ . . .+

1

(n+ 1)2

+
1

n+ 1
+

1

n+ 1
=

n− 2

(n+ 1)2
+

2

n+ 1

=
n− 2 + 2(n+ 1)

(n+ 1)2
=

3n

(n+ 1)2
< 1,

because 3n < (n+1)2, which is equivalent with the
inequality n · (n− 1) + 1 > 0.
This is true for n ≥ 2 and means we do not have

solutions.
Consequently our Diophantine algebraic equation

(3) has finite number solutions in the set of natural
numbers.

Remark 1. If A = 1 then from proposition 1 we
obtain the equation x1 + x2 + . . .+ xn = x1 · x2 . . . ·
xn, which has finite number solutions in the set of
natural numbers for n ≥ 2.

Remark 2. For A = 1 and n ≥ 2 fixed natural
number such that 1 ≤ x1 ≤ x2 ≤ . . . ≤ xn−2 ≤ xn−1

and n+1 ≤ xn−1 ≤ xn we get x1 + x2 + . . .+ xn <
x1 · x2 · . . . · xn.
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Remark 3. For A = 1 and n = 3 we ob-
tain the problem x1 + x2 + x3 = x1x2x3

proposed for mathematical olimpiad [4]
and we have 7 solutions (x1, x2, x3) ∈
{(0, 0, 0), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2),
(3, 2, 1)}.

Remark 4. For A = 1 and n = 4 we obtain the
Diophantine equation x1+x2+x3+x3 = x1·x2·x3·x4

and we solved in [5] by hand calculus and we get 13
different solutions in the set of natural numbers:

(x1, x2, x3, x4) ∈ {(0, 0, 0, 0), (2, 4, 1, 1), (2, 1, 4, 1),
(2, 1, 1, 4), (4, 2, 1, 1), (4, 1, 2, 1), (4, 1, 1, 2), (1, 2, 4, 1),

(1, 2, 1, 4), (1, 4, 1, 2), (1, 4, 2, 1), (1, 1, 2, 4), (1, 1, 4, 2)}.

Next we generalise proposition 1.
Let us consider the following Diophantine alge-

braic equation in the set of natural numbers:

x1 + x2 + . . .+ xn +B = A · x1 · x2 . . . xn (4)

where xi ∈ N for every i = 1, n are the unknowns
and A,B ∈ N are fixed natural numbers.

Proposition 2. The equation (4) has finite number
solutions in the set of natural numbers for n ≥ 2.

Proof. I. If A = 0, then x1 + x2 + . . .+ xn +B = 0.
If B = 0 then we obtain the banal solution x1 =
x2 = . . . = xn = 0. If B ≥ 1 then we do not have
solutions.
II. Next let be A ≥ 1. If there exists i = 1, n such

that xi = 0 we obtain x1 + x2 + . . . + xn + B = 0.
If B = 0 then we obtain the banal solution x1 =
x2 = . . . = xn = 0. If B ≥ 1 then we do not have
solutions. So we can suppose for every i = 1, n
that xi ̸= 0. This means xi ≥ 1 for every i = 1, n.
Without loss of generality we can suppose 1 ≤ x1 ≤
x2 ≤ . . . ≤ xn. By permutation we can obtain all
solutions of the Diophantine algebraic equation (4).
We have the following subcases when A ≥ 1 :
II.1. If B = 0 from equation (4) we reobtain the

equation (3). Using proposition 1 we can deduce
that our equation has finite number solutions in the
set of natural numbers for n ≥ 2.
II.2. If B ≥ 1 we make the discussion correspond-

ing to n.
II.2.a. In the first case n = 1 and from (4) we get

the equation x1 + B = A · x1. If A = 1 and B = 0
we have infinite solutions. If A = 1 and B ≥ 1
we do not have solutions. If A ≥ 2 them from the
equation x1 + B = A · x1 we obtain x1 = B

A−1 , so
we have at most one natural number solution.
II.2.b. In the second case n ≥ 2 and the equation

(4) we put in the form

1 + 1 + . . .+ 1 + x1 + x2 + . . .+ xn

= A · 1 · 1 · . . . · x1 · x2 · . . . · xn,

where the number 1 appears B times in the above
equation. We denote z1 = z2 = . . . = zB = 1,

zB+1 = x1, zB+2 = x2, . . . , zB+n = xn, and we
obtain the equation

z1 + z2 + . . .+ zB + zB+1 + zB+2 + . . .+ zB+n

= A · z1 · z2 · . . . · zB · zB+1 · zB+2 · . . . · zB+n,

where

1 ≤ z1 ≤ z2 ≤ . . . ≤ zB ≤ zB+1 ≤ zB+2

≤ . . . ≤ zB+n.

Using proposition 1 we have finite number solu-
tions in the set of natural numbers.

Remark 5. For B = 0 from proposition 2 we re-
obtain proposition 1.

Remark 6. For A = B = 3 I proposed the problem
x1 + x2 + x3 + 3 = 3 · x1 · x2 · x3 for mathematical
competition. This Diophantine equation does not
have solution in the set of natural numbers.

3 Conclusions

We finish our work with the following proposition.

Proposition 3. The Diophantine system (2) has
finite number solutions in the set of natural numbers
for n,m ∈ N \ {0} excepting n = m = 1.

Proof. Now let us consider the system (2) for the
case n = 1 and m ≥ 2{

x1 = y1 · y2 · . . . · ym
y1 + y2 + . . .+ ym = x1,

(5)

so y1 + y2 + . . .+ ym = y1 · y2 · . . . · ym.
Using remark 1 we have finite number solutions

in the set of natural numbers. Analogously for the
case m = 1 and n ≥ 2.

Remain to verify the system (2) when n ≥ 2 and
m ≥ 2.

If xn−1 ≤ n we eliminate from the system (2) the
unknown xn :

xn = y1 · y2 · . . . · ym − (x1 + x2 + . . .+ xn−1),

so

y1 + y2 + . . .+ ym = x1 · x2 · . . . · xn−1·
· [y1 · y2 · . . . · ym − (x1 + x2 + . . .+ xn−1)].

Let us denote A = x1 · x2 · . . . · xn−1 and B =
x1 · x2 · . . . · xn−1 · (x1 + x2 + . . . + xn−1). Using
1 ≤ x1 ≤ x2 ≤ . . . ≤ xn−1 ≤ n means that we have
finite number possibilities for the values A and B.
We get

y1 + y2 + . . .+ ym +B = A · y1 · y2 · . . . · ym.

Using proposition 2 we obtain finite number solu-
tions for this equation in variables y1, y2, . . . , ym.
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Consequently the unknown xn will take finite num-
ber natural values.
Analoguesly, when ym−1 ≤ m.
So the system (2) has finite number solution for

xn−1 ≤ n or ym−1 ≤ m. Remains the case, when
xn−1 ≥ n + 1 and ym−1 ≥ m + 1. From xn−1 ≥
n+ 1 and ym−1 ≥ m+ 1 we deduce using remark 2
x1 + x2 + . . .+ xn < x1 · x2 · . . . · xn and y1 + y2 +
. . .+ ym < y1 · y2 · . . . · ym. Hence x1 · x2 · . . . · xn >
x1+x2+. . .+xn = y1 ·y2 ·. . .·ym > y1+y2+. . .+ym,
which gives a contradiction.
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The research of Béla Finta was performed in the
frame of the Research Center on Artificial In-
telligence, Data Science and Smart Engineering
(Artemis).

References

[1] Bencze, M. (2010). Open Question OQ. 3664,
Octogon Mathematical Magazine, vol. 18, no.
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