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Abstract 

This research focuses on the development of a source separation algorithm tailored to significantly enhance audio 

processing in noisy environments.  By utilising advanced signal processing techniques and algorithms based on 

time-frequency analysis, the study explores the effectiveness of the Compact Kernel Distribution (CKD) for this 

purpose. Performance was evaluated using key metrics such as Signal-to-Interference Ratio (SIR), Source-to-

Distortion Ratio (SDR), and Signal-to-Noise Ratio (SNR). Notable improvements were observed: SIR improved 

by 4.90% and decreased by 5.36%, while SDR improved by 66.47% and 58.08% at SNR of 5 dB SNR for the audio 

recordings signals compared to Max-Corr and Simplex-Corr, respectively. The results demonstrate that the 

developed algorithm significantly enhances SIR, SDR, and SNR metrics, with potential applications across 

various industries, including speech enhancement.  

. 

Key words: compact kernel distribution, wigner-ville distribution, digital signal processing, automatic speech 

recognition, additive white gaussian noise. 

 
 

1. Introduction 

Audio source separation refers to the process of 

separating individual sound sources from a mixture of 

audio signals. It has numerous applications in audio 

processing, particularly in noisy environments, where 

it can significantly improve the quality and 

intelligibility of audio signals [1]. 

Also, Audio source separation is a technology 

designed to isolate one or more specific source signals 

from an audio recording containing multiple sound 

sources [2]. This technology is particularly valuable in 

scenarios where audio quality is compromised by 

background noise or overlapping speakers. Its 

applications span various industries, enhancing audio 

processing, improving communication, and providing 

a richer audio experience in noisy environments. 

Notable applications include speech communication, 

speech enhancement, hearing aids, automatic speech 

recognition (ASR), music separation in recording and 

production, broadcasting and entertainment, 

surveillance systems, assistive listening devices, and 

virtual and augmented reality [1][2]. 

In many real-world scenarios, audio recordings are 

frequently contaminated by background noise, 

concurrent speakers, or reverberation, severely 

impacting the quality and intelligibility of the desired 

audio signals [2]. This presents a significant challenge 

for applications such as speech communication, 

automatic speech recognition (ASR), speech 

enhancement, music production, and assistive 
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listening devices. Therefore, it is crucial to develop 

audio source separation techniques capable of 

effectively extracting the desired audio signals from 

noisy environments. 

The primary motivation for developing audio source 

separation algorithms is to enhance audio processing 

in noisy environments, thereby improving the quality, 

intelligibility, and user experience across various audio 

applications. Background noise and interfering 

speakers can hinder effective communication, reduce 

speech recognition accuracy, and detract from speech 

enhancement efforts. By isolating desired audio 

signals from unwanted noise and interference, overall 

audio quality can be significantly improved, leading to 

better speech intelligibility, more accurate speech 

recognition, and a more immersive audio experience. 

This research aims to address these challenges by 

configuring multichannel noisy audio signals using 

recorded audio and developing source separation 

algorithms based on time-frequency analysis. The 

effectiveness of these algorithms will be analysed and 

validated to ensure significant improvements in audio 

source separation in noisy environments. 

 

Recent advancements in audio source separation have 

significantly addressed challenges in both signal 

processing and practical applications. A 

comprehensive review in 2018 [3] highlighted the 

transition of multichannel audio source separation 

techniques from theoretical models to real-world 

scenarios, addressing issues like moving sources, 

varying sensor counts, and high reverberation levels. 

This review emphasized the need for future research to 

combine array processing, source separation, and 

machine learning to enhance robustness in complex 

conditions. Another key review [4] provided an 

extensive overview of machine listening research, 

covering advancements in sound source detection, 

classification, localization, enhancement, and 

separation. It introduced a workflow for selective 

hearing systems, emphasizing the importance of real-

time processing and perceptual quality, and suggested 

further exploration of joint models for Active Noise 

Control (ANC) and machine listening. 

Complementing these reviews, a 2020 study [5] 

introduced blind audio source separation methods 

using expectation-maximization algorithms, showing 

improved speech quality and intelligibility. In 2021, an 

Enhanced Residual Filter (ERF) approach combined 

deep neural networks with traditional algorithms to 

improve localization performance [6], and research on 

real-time separation algorithms, such as ConvTasNet 

and Demucs, demonstrated significant performance 

improvements [7]. Additionally, various separation 

methods and optimization techniques, including the 

auxiliary function-based discriminative nonnegative 

matrix factorization, were validated for their 

effectiveness [8]. 

Despite these advancements, existing methods still 

face challenges, such as dealing with high 

reverberation, spatially diffuse sources, and 

synchronization delays, which limit their practical 

application in diverse and noisy environments. Current 

techniques often struggle with scalability and 

computational efficiency, particularly in multi-channel 

scenarios. To address these limitations, this research 

proposes using Compact Kernel Distribution (CKD) 

time-frequency distribution (TFD) methods, aimed at 

enhancing the resilience and reliability of audio source 

separation in noisy environments. This approach 

leverages advanced signal processing techniques to 

improve performance and adaptability, thereby 

contributing to the field by addressing key challenges 

in audio processing applications. 

 

2. METHODOLOGY 

The methodology employed in this study focuses on 

developing and validating an audio source separation 

algorithm designed specifically for noisy 

environments. Utilising compact kernel time-

frequency distribution. This section outlines the 

systematic application of these methodologies, 

detailing their theoretical foundations, implementation 

strategies, and expected contributions to improving 

signal clarity and intelligibility in audio recordings. 

A. BLOCK DIAGRAM OF AUDIO SOURCE 

SEPARATION SYSTEM 

The working of the system is best summarized with a 

block diagram-which represented with blocks shown 

in Figure 1. 

Fig. 1 Block diagram of the Audio Source Separation 

system 

From Fig. 1, the process begins with the input audio 

signal, containing a mixture of desired sources and 

unwanted noise or interference. Following this, 

preprocessing steps are applied to remove artifacts and 

unwanted components, including filtering and noise 

reduction. Feature extraction is then performed using 
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this techniques Wigner- vile distribution (WVD), 

Window Wigner- vile distribution (WWVD), Compact 

kernel distribution (CKD) TFD, capturing spectral and 

temporal characteristics. These features serve as input 

to the source separation algorithm, which utilises a 

decision tree classifier to separate individual audio 

sources from the mixture. Post-processing techniques, 

such as denoising, is then applied to enhance the 

quality of the separated sources. Finally, the output 

audio signal comprises the isolated desired sources, 

effectively separated from the unwanted noise or 

interference. 

B. AUDIO RECORDING SIGNALS 

The audio signals, for the research, employed a data 

collection strategy for speech enhancement for High-

quality audio recordings was captured, and categorized 

by speaking scenarios in noisy environments to 

construct the foundational dataset. The audio recorded 

signal, is derived from Waveform Audio File Format 

(WAV) files sourced from the Kaggle Dataset known 

as LJ Speech 

(https://www.kaggle.com/dataset/mathurinache/the-lj-

speech-dataset) [9]. LJ Speech is a publicly available 

speech dataset which comprises of 13,100 brief audio 

clips featuring a solitary speaker reciting passages 

from seven non-fiction books. Each clip is 

accompanied by a corresponding transcription. The 

clips exhibit varying durations, spanning from 1 to 10 

seconds, with a cumulative duration of approximately 

24 hours. The texts, published between 1884 and 1964, 

fall within the public domain. Librivox project 

recorded the audio in 2016-2017, and the recordings 

are also part of the public domain. The single channel 

audio recording was then mixed together to form the 

multichannel audio using the algorithm developed. 

The mixing equation used in audio signal processing, 

represents the output signal 𝑦𝑐(𝑛) at discrete time (n) 

as the sum of the products of input signals 𝑥𝑘 (𝑛)with 

corresponding coefficients 𝑎𝑘, where (K) is the total 

number of input signals [10] is show in Equation (1): 

𝑦𝑐(𝑛) = ∑ 𝑎𝑘  . 𝑥𝑘 (𝑛)𝑘
𝑘=1    (1) 

Where: 𝑦𝑐(𝑛)is the mixed output signal at time (n), 

𝑥𝑘 (𝑛)is the 𝑘𝑡ℎinput signal at time (n) and 

𝑎𝑘is the coefficient or gain applied to the 𝑘𝑡ℎinput 

signal. 

Noise Signals 

The noise signal used is a database of 16-channel 

environmental noise recording name DEMAND 

(Diverse Environments Multichannel Acoustic Noise 

Database) by Emmanuel Vincent et’al, consisting of 

16 single channel WAV files in one directory at both 

48KHz and 16KHz sampling rate and all files were 

compressed into ‘zip’ files [11]. Two zip files were 

used for this research work which are 

OHALLWAY_16k.zip and OFFICE_16k.zip to 

denote common interference of hallway and office 

respectively. The single channel WAV file noise signal 

downloaded was then added to the multichannel audio 

signal.  

Additive White Gaussian Noise (AWGN) is a type of 

interference commonly inserted into signals within 

communication systems. It is referred to as "additive" 

because it is added to the original signal, "white" 

because it maintains consistent power spectral density 

across all frequencies, and "Gaussian" because it 

adheres to a Gaussian (normal) probability 

distribution. When evaluating the performance of 

audio signals, consideration of such noise is essential. 

In the signal pre-processing phase, a standard AWGN 

model is utilized to generate and introduce noise into 

all audio signals. Equation (2) describe the resulting 

signal (y) is formulated as the sum of the input signal 

(x) and the noise component (n)  [12]. 

y =  x +  n      (2) 

where (y) represents the output signal, (x) denotes the 

input signal, and (n) stands for the AWGN. This 

approach ensures that the developed audio source 

separation algorithm can effectively handle and 

mitigate the impact of noise, thereby enhancing audio 

processing in noisy environments. 

 

C Time-Frequency Analysis/Distribution 

 

Time-frequency analysis/distribution (TFD) is a signal 

processing technique utilized to examine and depict 

signals across both time and frequency domains. It 

offers a comprehensive representation of signals that 

vary over time and frequency, enabling the analysis of 

signals with multiple time-varying frequencies [13]. 

Applications of time-frequency analysis/distribution 

techniques span diverse fields such as multichannel 

audio source separation, music source separation, and 

speech separation. The specific TFD methods 

employed in this study are detailed as follows: 

I. Wigner-Ville Distribution of a Signal 

(WVD) 

The Wigner-Ville Distribution (WVD) is a method 

used to estimate the power spectral function of a 

nonstationary signal by analysing its time-frequency 

energy distribution. Initially introduced by Wigner and 

later adapted by Ville for signal processing 

applications [14], the WVD is represented as 

𝑃𝑧,𝑊𝑉𝐷(𝑡, 𝑓) and is represented mathematically in 

Equation (3): 

Pz,WVD(t, f) = ∫ z (t +  
τ

2
) z∗(t − 

τ

2
)e−j2πfτdτ

∞

−∞
 (3) 

Here, 𝑃𝑧,𝑊𝑉𝐷(𝑡, 𝑓)denotes the Wigner-Ville 

distribution of a signal at time (t) and frequency (f), 

where z (t +  
τ

2
) represents a complex-valued 

function indicating the analysing signal or window 

function, and * denotes complex conjugation. Due to 

https://www.kaggle.com/dataset/mathurinache/the-lj-speech-dataset
https://www.kaggle.com/dataset/mathurinache/the-lj-speech-dataset
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the impracticality of theoretically evaluating over 

infinite limits, a pseudo-Wigner-Ville distribution 

(PWVD) addresses this by employing a running 

window [14]: 

Pz,PWVD(t, f) = ∫ h(τ)z (t + 
τ

2
) z∗(t −

∞

−∞

 
τ

2
)e−j2πfτdτ    (4) 

where h(τ) is the window function. The WVD utilizes 

specific kernel functions from the bilinear generalized 

class of time-frequency distributions, demonstrating 

effective time-frequency resolution, particularly in low 

Signal-to-Noise Ratio (SNR) conditions [14]. 

However, inherent artifacts and cross terms limit its 

performance. To mitigate these issues, the windowed 

WVD (WWVD) incorporates a window function post 

obtaining the instantaneous autocorrelation function 

(IAF). The Hamming window is preferred for its 

enhanced frequency resolution and suppression of side 

lobes [15]:          

Pz,WWVD(t, f)  =  ∫ gw(τ) z (t +  
τ

2
 ) z∗ (t −

∞

−∞

 
τ

2
 ) e−j2πfτdτ     (5) 

Pz,WWVD(t, f)  =  ∫ 0.54 − 0.46 cos (
2𝜋𝜏

𝑇
) z (t +

∞

−∞

 
τ

2
 ) z∗ (t −  

τ

2
 ) e−j2πfτdτ   (6) 

 

II Compact Kernel Distribution (CKD)  

 

Compact Kernel Distribution (CKD): The Compact 

Kernel Distribution (CKD) technique represents an 

enhanced iteration of the pseudo-Wigner-Ville 

Distribution (WVD), designed to feature a kernel 

window function with compact support that effectively 

diminishes outside a specified range in the ambiguity 

domain [14]. Unlike Gaussian windows of infinite 

length, CKD avoids the need for truncation using 

rectangular windows, thereby preserving information. 

CKD is distinguished for its capability to suppress 

cross-terms while maintaining high resolution of auto-

terms, achieved through a combination of compact 

support and adaptable adjustments to the kernel's 

shape and size independently: 

𝑔(𝑣, τ) = 𝐺1(𝑣)𝑔2(τ) =

{𝑒
2𝑐 

𝑐𝐷2

𝑒𝑉2−𝐷2+
𝑐𝐸2

τ2−𝐸2

0                        

|V|<𝐷,|𝜏 |< 𝐸,
otherwise

  (7) 

where ν and τ represent Doppler and lag windows 

determined by parameters D and E, and C controls the 

shape. The width of the kernel in the ambiguity domain 

is determined based on prior knowledge of the signal 

components. The Instantaneous Autocorrelation 

Function (IAF) of WVDs, forms the basis of CKD, and 

its Time-Frequency Distribution (TFD) is given in 

Equation (8): 

Pz,CKD(t, f) = ∫ g(t, τ) ∗
∞

−∞
 z (t + 

τ 

2
 ) z∗ (t −

 τ 

2
 ) e−j2πfτdτ    (8) 

Where g(t, τ) is derived from: 

g(t, τ) = ∫ 𝑔(v, τ)e−j2πvτdv
∞

−∞
  (9) 

From this, the CKD TFD is expressed as: 

Pz,CKD(t, f) = ∫ ∫ ∫ g(v, τ) z (u +  
τ 

2
) z∗ (u −

∞

−∞

∞

−∞

∞

−∞
 τ 

2
) e−j2πfτ. e−j2πvτdudvdτ            (10) 

Parameters such as the kernel shape C, Doppler cut-off 

D, and lag cut-off E are selected based on prior 

knowledge of the signal components. Table 1 outlines 

the ranges for these parameters. 

The implementation of CKD is facilitated through the 

MATLAB function `tf_kernel_ckd`, which generates 

respective kernels based on specified parameters. The 

IAF function `IAF_CKD` smoothes the IAF in the lag 

domain using these kernels, followed by applying 

CKD to obtain the TFD. By employing these methods, 

the CKD approach enhances time-frequency analysis, 

particularly suitable for signals exhibiting complex 

energy distributions in the (t, f) domain. 

Table 1: C, D, E Range of Values for CKD Kernel [16] 

 

S/N PARAMETERS RANGE OF VALUE 

1 C [0, 3] 

2 D [0, 1] 

3 E [0, 1] 

 

By implementing these techniques, the CKD method 

improves time-frequency analysis, particularly for 

signals exhibiting complex energy distributions in the 

(t, f) domain. 

 

III Instantaneous Power Formulations From TFD: 

Following the completion of TFD analysis, the 

subsequent step involves examining the results 

obtained from both WVD and CKD analyses. 

Typically, TFD involves several parameters that 

influence its characteristics and applicability. These 

parameters allow analysts to customize the TFD 

method to suit specific applications and signal 

attributes. This research specifically focuses on time-

domain power analysis. More precisely, the analysis in 

this study concentrates on instantaneous power (IP), 

calculated as the integral of TFD over frequency [14]. 

The mathematical representation of instantaneous 

power at time t is given by Equation (11): 

P(t)  =  ∫ 𝑃𝑧(t, f)df 
∞

−∞
   (11) 

 

D. Performance analysis/ simulation set-up  

Performance indicators for audio processing are 

measures used to evaluate the effectiveness and quality 

of audio processing algorithms. These indicators 

provide objective assessments of the performance of 

the algorithms in various aspects, such as noise 

reduction, source separation, and audio quality[2].  

Objective Performance Indicators: 

Energy Ratio (ER), Signal-to-Distortion Ratio (SDR), 

Signal-to-Noise Ratio (SNR), Signal-to-Interference 
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Ratio (SIR): These indicators focus on quantifying the 

quality of the processed audio signal objectively. They 

provide numerical measures that can be used to 

compare different algorithms and assess their 

performance. 

 

Subjective Performance Indicators: 

Perceptual Evaluation of Audio Quality (PEAQ), 

Mean Opinion Score (MOS), and Objective Difference 

Grade (ODG): These indicators consider  

human perception and provide subjective evaluations  

of the audio quality. They are obtained through 

listening tests and subjective assessments by human 

listeners. 

Signal-to-Distortion Ratio (SDR): SDR is a 

commonly used objective performance indicator for 

Audio source separation. It measures the ratio of the 

power of the desired source signal to the power of the 

distortion introduced during the separation process. 

Higher SDR values indicate better separation 

performance [17]. Mathematically it represented in 

Equation (12): 

SDR =  10 ∗  log10 
(Power of Source Signal)

(Power of Distortion)
     (12) 

Signal-to-Interference Ratio (SIR): SIR measures 

the ratio of the power of the desired source signal to 

the power of interfering sources or artifacts. It assesses 

the ability of the algorithm to suppress unwanted 

sources or artifacts in the separated signal. Higher SIR 

values indicate better separation performance [18]. 

Mathematically it represented in Equation (13): 

SIR =  10 ∗  log10 
(Power of Source Signal)

(Power of Interfering Sources)
   (13) 

Signal-to-Noise Ratio (SNR) 

SNR is a fundamental objective metric used to 

quantify the ratio of the desired signal (source) to the 

unwanted noise in an audio signal. It provides a 

numerical value that measures the extent to which the 

algorithm successfully separates the target audio 

source from the surrounding noise. 

In other word SNR is a measure of the ratio of the 

power of a signal to the power of the noise that 

interferes with the signal. It is a widely used objective 

measure of audio quality and is used to evaluate the 

effectiveness of noise reduction algorithms [19]. 

Mathematically, SNR is defined in Equation (14): 

SNR = 10. log10 (
Power of signal(source)

Power of noise
)   (14) 

 

Table 2 Simulation Set-up Values  

 

 

 

 

From Table 2 Simulation Set-up Values above shows 

the sampling frequency and the length (duration in 

time) of the multichannel audio sources used for the 

Audio Recording signals.  Also, the values of the 

sampling frequency and the length (duration in time) 

for Noise signal (hallway and office interference) 

downloaded. 

Table 3 Simulation Set-up Parameters Values 

S/

N 

SIGNAL PARAMETERS C, 

D, and E for CKD 

C D E 

2 Audio Recording 1.5 0.1 0.1 

 

While, Table 3 Simulation Set-up Parameters Values 

shows the range of parameters (C, D, and E) used for 

the TFD algorithm developed for CKD kernel 

respectively for the multichannel audio source used for 

the Audio Recording signals based on their range of 

values as mention in Table 1. 

The ‘SIR_SDR’ algorithm developed calculates the 

Signal-to-Interference Ratio (SIR) or Signal-to-

Distortion Ratio (SDR) of a given signal series. It takes 

the input series ‘IP’ and a threshold ‘thr’ as its inputs. 

The function operates on the input series in blocks of 

S/N Signal Sampling 

frequency 

(fs) 

Duration in 

seconds 

(sec) 

2 Audio 

Recording 

22.050KHz 6.5 sec 

3 Hallway 

Interference 

16KHz 4.5 and 6.5 

sec for AI 

and Audio 

Recording 

Respectively 

4 Office 

Interference 

16KHz 4.5 and 6.5 

sec for AI 

and Audio 

Recording 

Respectively 
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100 samples, determining whether each block 

represents a signal or noise based on whether its 

amplitude exceeds a threshold percentage of 1% 

selected of the maximum amplitude. It then computes 

the total signal and noise powers and calculates the 

Signal Ratio (SR), which may represent SIR or SDR, 

based on specific applications. 

Furthermore, ‘SR_Setup’ and ‘SR_Setup1’, intended 

for both AI-generated and audio-recorded signals, 

evaluate the accuracy of the Signal-to-Interference 

Ratio (SIR) and Signal-to-Distortion Ratio (SDR) 

under various Signal-to-Noise Ratio (SNR) conditions. 

These setups generate noisy versions of a signal and 

compute the WWVD and CKD for each noisy version. 

Subsequently, they estimate the Instantaneous Power 

(IP) based on the WWVD and CKD and calculate the 

SIR or SDR for each IP. Ultimately, the setups average 

the SIR or SDR over Monte Carlo loops and plot the 

results for different SNR values. 

3. RESULTS AND DISCUSSION 

Results and discussions are presented in this section. 

Audio Recorded Signals 

Figure 2 shows the time representation plot for Audio 

Recording signals while Figure 3 shows the frequency 

representation plot for the multichannel Audio 

Recording signals  

 

Fig 2: The time plot of Audio Recording signal 

Figure 2 shows the time plot of the Audio Recording 

signals for the individual single channel audio and the 

combined multichannel audio. Examining the combine 

audio plot of Figure 2 shows that all single audio 

channels have been appropriately captured. 

 

Fig 3: The frequency plot of Multichannel Audio 

Recording signal 

Figure 3 shows the frequency plot of the multichannel 

Audio Recording signal without Hilbert and with 

Hilbert. Where the plot without Hilbert represents the 

original audio signal or the normal version and the plot 

with Hilbert represent the analytic audio signal. The 

analytic audio signal was obtained by applying the 

Hilbert transform to the original audio signal. Also, it 

is seen in the second aspect of Figure 3 that the non-

required mirrored version has been eliminated. 

 

Time-frequency representations (TFRs) of the 

TFDs considered in the research 

 

This section presents the multi-channel Audio 

recording signals Time Frequency Representations of 

the TFDs considered in this research. 

3D TFR of WVD for audio recording signal 

 

Fig. 4 3D plot of multichannel Audio Recording 

signal. 

Figure 4 shows the correlation between power, time, 

and frequency in the typical audio signal utilising 

WVD. The signal, has a center frequency of 2 KHz, a 

sampling frequency of 22 KHz and SNR of 10 dB.  

2D TFR of WVD, AND WWVD for audio recording 

signal 

Figure 5 shows the two-dimension (2D) contour plot 

of multichannel Audio recording signal.  

 

Fig. 5 2D contour plot of multichannel Audio 

Recording signal. 

Figure 5 shows the 2D contour plot of the multichannel 

Audio Recording signal, as depicted in Figure 4, is 

presented using the Wigner-Ville Distribution (WVD) 

and the Window Wigner-Ville Distribution (WWVD). 

The visual representation highlights the presence of 

cross terms in the WVD plot, indicating interference 
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resulting from the interaction between the primary 

signal and the accompanying noise. At such, it shows 

the importance of mitigating cross term effects for 

accurate signal analysis. The WWVD plot, however, 

reveals a reduction in cross term effects, suggesting 

improved signal clarity and facilitating more precise 

feature extraction. This comparative analysis validates 

the effectiveness of employing the WWVD 

methodology in reducing interference and enhancing 

the clarity of underlying signal components, thereby 

justifying selection for further algorithmic design and 

analysis in subsequent stages of the research. 

2D TFR of CKD for audio recording signal; 

Figure 6 shows the two-dimension (2D) contour plot 

of CKD multichannel Audio Recording signal 

 
Fig. 6 2D contour plot of CKD multichannel Audio 

Recording signal. 

Figure 6 presents utilizing the visual representation, 

the CKD parameters C, D, and E are set at specific 

values: C at 1.5, D at 0.1, and E at 0.1. Analysis of 

various tests involving these parameters reveals that 

while parameter C can vary between low and high 

values within its range, parameters D and E perform 

optimally at lower values, effectively reducing artifact 

presence. while, increasing their values increases the 

presence of artifact. Notably, CKD analyses 

demonstrate eradication of cross terms compared to 

Figure 5, undo, with a slight presence of internal 

artifacts. 

 
Fig. 7: Special Zoom of the 2D contour plot of CKD 

multichannel Audio Recording signal. 

From Fig. 7, shows a Special Zoom of the 2D contour 

plot of CKD time and frequency plot of the 

multichannel Audio Recording signal of Figure 6. The 

figure shows what the signal consists, and the more 

circles inside each one indicates more frequency at 

different level and power that have been captured. 

performance analysis results of audio signals based 

on SIR, SDR and SNR 

The plots of the performance analysis considered for 

this research is presented and discussed in this section. 

The Audio signal performance analysis result for 

Audio Recording is given in Figure 8. 

 

Fig. 8 (a) 

 

Fig. 8 (b) 

 

Fig. 8 (c) 

Fig. 8 (a), (b), and (c): Performance Analysis Results 

of Audio Recording Signals 

Figure 8 (a), (b), and (c) shows Performance Analysis 

Results of multi-channel Audio Recording Signals for 

10 Iteration for each of the method with SNR from 0 

to 20 dB at interval of 5dB, where (a) shows the result 

Hallway Interference, (b) Office Interference and (c) 

SDR. So also, from the result obtained, CKD 

outperformed WWVD with higher SIR in figure 8 (a) 

with 14.19, (b) with 14.19 and (c) with SDR of 14.16. 

As stated in section 3.8, ‘Higher SIR or SDR values 

indicate better separation performance’ at such, CKD 

has a better separation than WWVD 

Performance validation analysis 

The research paper used for validation of this thesis 

used two novel methods for separating speakers in 

multi-speaker audio recordings, especially when 
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speakers have unbalanced or infrequent activity levels 

[20]. The first method, called the maximum correlation 

(Max-Corr) method, uses linear programming to 

maximize correlation between time frames to identify 

single-speaker frames. The second method, called the 

simplex correlation (Simplex-Corr) method, utilizes 

convex geometry tools on correlation vectors to detect 

vertices corresponding to single-speaker frames. Both 

methods estimate the activity probabilities of each 

speaker from the detected single-speaker frames. 

These estimated probabilities are then used to compute 

spectral masks for separating and enhancing the 

individual speaker signals via spatial and spectral 

processing.  

Result Validation for Audio Recorded Signal 

Figure 9 (a), and (b) below shows the SIR and SDR 

Results Validation for the multichannel Audio 

Recording Signals respectively. 

 

Fig. 9 (a) 

 

Fig. 9 (b) 

Fig. 9 (a), and (b): Results Validation for Audio 

Recording Signals 

Figure 9 (a), and (b) are the Results of Validation for 

Audio Recording Signals, based on SIR and SDR 

performance validation considered for this research. 

The SIR of the CKD for this thesis recorded an 

improvement of 4.90% compare to the Max-

Correlation with a decrease of 5.36% for the Simplex-

Correlation of [20] compare to CKD of this thesis at 

SNR of 5 dB respectively was achieved. While SDR 

also recorded percentage improvement of 66.47% and 

58.08% for both Max-Correlation and Simplex-

Correlation respectively compared to  [20]. 

4.  Conclusion 

This research successfully developed an audio source 

separation algorithm tailored for noisy environments 

using Compact Kernel Distribution (CKD) and time-

frequency analysis techniques. The algorithm 

demonstrated significant improvements in Signal-to-

Interference Ratio (SIR), Source-to-Distortion Ratio 

(SDR), and Signal-to-Noise Ratio (SNR), achieving 

notable performance improvement: SIR improved by 

4.90% and decreased by 5.36%, while SDR improved 

by 66.47% and 58.08% at 5 dB SNR for the audio 

recordings compared to Max-Corr and Simplex-Corr, 

respectively. These advancements highlight the 

potential of the developed algorithm in applications 

such as speech enhancement and other audio 

processing tasks. For future research, integrating the 

developed algorithms with emerging technologies 

such as deep learning or reinforcement learning 

techniques could be explored. This integration may 

further enhance the algorithms' capabilities and 

adaptability to dynamic audio environments, paving 

the way for even more improved and versatile audio 

processing solutions. 
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