Acta Marisiensis.
|
|
||||||
Year 2024
Volume 21 (XXXVIII), no 1 Year 2023 Volume 20 (XXXVII), no 1 Volume 20 (XXXVII), no 2 Year 2022 Volume 19 (XXXVI), no 1 Volume 19 (XXXVI), no 2 Year 2021 Volume 18 (XXXV), no 1 Volume 18 (XXXV), no 2 Year 2020 Volume 17 (XXXIV), no 1 Volume 17 (XXXIV), no 2 Year 2019 Volume 16 (XXXIII), no 1 Volume 16 (XXXIII), no 2 Year 2018 Volume 15 (XXXII), no 1 Volume 15 (XXXII), no 2 Year 2017 Volume 14 (XXXI), no 1 Volume 14 (XXXI), no 2 Year 2016 Volume 13 (XXX), no 1 Volume 13 (XXX), no 2 Year 2015 Volume 12 (XXIX), no 1 Volume 12 (XXIX), no 2 Year 2014 Volume 11 (XXVIII), no 1 Volume 11 (XXVIII), no 2 Year 2013 Volume 10 (XXVII), no 1 Volume 10 (XXVII), no 2 Year 2012 Volume 9 (XXVI), no 1 Volume 9 (XXVI), no 2 Year 2011 Volume 8 (XXV), no 1 Volume 8 (XXV), no 2 Year 2010 Volume 7 (XXIV), no 1 Volume 7 (XXIV), no 2 Year 2009 Volume 6 (XXIII) |
2019, Volume 16 (XXXIII), no 2
Marilena GHIȚESCU, Marius GHIȚESCU, Transilvania University of Brasov, Romania Arina MODREA, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Tîrgu Mureș, Romania Abstract: The elastic couplings are frequently used in mechanical transmissions design, to take over the radial, axial and angular misalignments and also to take over the shocks and the overloads that could appear.In this paper is presenting some aspects about the construction of couplings with bolts using non-metallic elements, e.g. rubber, having different hardness, the elements involved in torque transmission, in this case elastic elements, having also different dimensions or forms, in the way to have a good elasticity and capacity of vibration absorbtion, determining theoretical static rigidity and experimental static rigidity of a new elastic coupling with cylindrical bolts and nonmetallic elements and compare of results for these values. DOI: https://doi.org/10.2478/amset-2019-0011 Pages: 13-19 View full article |
||||||
Update: 19-Jun-2024 | © Published by University Press |