Year 2024Volume 21 (XXXVIII), no 1 Year 2023Volume 20 (XXXVII), no 1Volume 20 (XXXVII), no 2 Year 2022Volume 19 (XXXVI), no 1Volume 19 (XXXVI), no 2 Year 2021Volume 18 (XXXV), no 1Volume 18 (XXXV), no 2 Year 2020Volume 17 (XXXIV), no 1Volume 17 (XXXIV), no 2 Year 2019Volume 16 (XXXIII), no 1Volume 16 (XXXIII), no 2 Year 2018Volume 15 (XXXII), no 1Volume 15 (XXXII), no 2 Year 2017Volume 14 (XXXI), no 1Volume 14 (XXXI), no 2 Year 2016Volume 13 (XXX), no 1Volume 13 (XXX), no 2 Year 2015Volume 12 (XXIX), no 1Volume 12 (XXIX), no 2 Year 2014Volume 11 (XXVIII), no 1Volume 11 (XXVIII), no 2 Year 2013Volume 10 (XXVII), no 1Volume 10 (XXVII), no 2 Year 2012Volume 9 (XXVI), no 1Volume 9 (XXVI), no 2 Year 2011Volume 8 (XXV), no 1Volume 8 (XXV), no 2 Year 2010Volume 7 (XXIV), no 1Volume 7 (XXIV), no 2 Year 2009Volume 6 (XXIII)
|
2020, Volume 17 (XXXIV), no 2
The Integral Form of the Schur Inequality
Author(s):
Béla FINTA, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Tîrgu Mureș, Tîrgu Mureș, Romania
Abstract:
The purpose of this paper is to show the integral form of the original Schur inequality and to give some applications.
DOI:
https://doi.org/10.2478/amset-2020-0017
Pages: 36-40
View full article
|