Acta Marisiensis.
|
|
||||||
Year 2024
Volume 21 (XXXVIII), no 1 Year 2023 Volume 20 (XXXVII), no 1 Volume 20 (XXXVII), no 2 Year 2022 Volume 19 (XXXVI), no 1 Volume 19 (XXXVI), no 2 Year 2021 Volume 18 (XXXV), no 1 Volume 18 (XXXV), no 2 Year 2020 Volume 17 (XXXIV), no 1 Volume 17 (XXXIV), no 2 Year 2019 Volume 16 (XXXIII), no 1 Volume 16 (XXXIII), no 2 Year 2018 Volume 15 (XXXII), no 1 Volume 15 (XXXII), no 2 Year 2017 Volume 14 (XXXI), no 1 Volume 14 (XXXI), no 2 Year 2016 Volume 13 (XXX), no 1 Volume 13 (XXX), no 2 Year 2015 Volume 12 (XXIX), no 1 Volume 12 (XXIX), no 2 Year 2014 Volume 11 (XXVIII), no 1 Volume 11 (XXVIII), no 2 Year 2013 Volume 10 (XXVII), no 1 Volume 10 (XXVII), no 2 Year 2012 Volume 9 (XXVI), no 1 Volume 9 (XXVI), no 2 Year 2011 Volume 8 (XXV), no 1 Volume 8 (XXV), no 2 Year 2010 Volume 7 (XXIV), no 1 Volume 7 (XXIV), no 2 Year 2009 Volume 6 (XXIII) |
2020, Volume 17 (XXXIV), no 1
Dániel Zoltán NAGY, Imre PILLER, Mathematical Institute, University of Miskolc, Miskolc, Hungary Abstract: The efficient human-machine interaction is an essential and current problem of computer science. The paper presents a gesture recognition method which applies optical flow calculation and an aggregation for obtaining a heatmap-like representation of the motion trajectories. After the overview of the image processing workflow, the paper introduces six symbols for providing some measurements. The described experiments show the robustness of the method against color, shape and time variance. DOI: https://doi.org/10.2478/amset-2020-0005 Pages: 22-26 View full article |
||||||
Update: 19-Jun-2024 | © Published by University Press |