Anul 2024Volum 21 (XXXVIII), nr 1Volum 21 (XXXVIII), nr 2 Anul 2023Volum 20 (XXXVII), nr 1Volum 20 (XXXVII), nr 2 Anul 2022Volum 19 (XXXVI), nr 1Volum 19 (XXXVI), nr 2 Anul 2021Volum 18 (XXXV), nr 1Volum 18 (XXXV), nr 2 Anul 2020Volum 17 (XXXIV), nr 1Volum 17 (XXXIV), nr 2 Anul 2019Volum 16 (XXXIII), nr 1Volum 16 (XXXIII), nr 2 Anul 2018Volum 15 (XXXII), nr 1Volum 15 (XXXII), nr 2 Anul 2017Volum 14 (XXXI), nr 1Volum 14 (XXXI), nr 2 Anul 2016Volum 13 (XXX), nr 1Volum 13 (XXX), nr 2 Anul 2015Volum 12 (XXIX), nr 1Volum 12 (XXIX), nr 2 Anul 2014Volum 11 (XXVIII), nr 1Volum 11 (XXVIII), nr 2 Anul 2013Volum 10 (XXVII), nr 1Volum 10 (XXVII), nr 2 Anul 2012Volum 9 (XXVI), nr 1Volum 9 (XXVI), nr 2 Anul 2011Volum 8 (XXV), nr 1Volum 8 (XXV), nr 2 Anul 2010Volum 7 (XXIV), nr 1Volum 7 (XXIV), nr 2 Anul 2009Volum 6 (XXIII)
|
2020, Volume 17 (XXXIV), no 2
The Integral Form of the Schur Inequality
Author(s):
Béla FINTA, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Tîrgu Mureș, Tîrgu Mureș, Romania
Abstract:
The purpose of this paper is to show the integral form of the original Schur inequality and to give some applications.
DOI:
https://doi.org/10.2478/amset-2020-0017
Pages: 36-40
Cite as:
download info as bibtex
View full article
|