Acta Marisiensis.
|
![]()
|
||||||
Anul 2024
Volum 21 (XXXVIII), nr 1 Volum 21 (XXXVIII), nr 2 Anul 2023 Volum 20 (XXXVII), nr 1 Volum 20 (XXXVII), nr 2 Anul 2022 Volum 19 (XXXVI), nr 1 Volum 19 (XXXVI), nr 2 Anul 2021 Volum 18 (XXXV), nr 1 Volum 18 (XXXV), nr 2 Anul 2020 Volum 17 (XXXIV), nr 1 Volum 17 (XXXIV), nr 2 Anul 2019 Volum 16 (XXXIII), nr 1 Volum 16 (XXXIII), nr 2 Anul 2018 Volum 15 (XXXII), nr 1 Volum 15 (XXXII), nr 2 Anul 2017 Volum 14 (XXXI), nr 1 Volum 14 (XXXI), nr 2 Anul 2016 Volum 13 (XXX), nr 1 Volum 13 (XXX), nr 2 Anul 2015 Volum 12 (XXIX), nr 1 Volum 12 (XXIX), nr 2 Anul 2014 Volum 11 (XXVIII), nr 1 Volum 11 (XXVIII), nr 2 Anul 2013 Volum 10 (XXVII), nr 1 Volum 10 (XXVII), nr 2 Anul 2012 Volum 9 (XXVI), nr 1 Volum 9 (XXVI), nr 2 Anul 2011 Volum 8 (XXV), nr 1 Volum 8 (XXV), nr 2 Anul 2010 Volum 7 (XXIV), nr 1 Volum 7 (XXIV), nr 2 Anul 2009 Volum 6 (XXIII) |
2020, Volume 17 (XXXIV), no 2
Zoltán GERMÁN-SALLÓ, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Tirgu Mures, Romania Zoltán GERMÁN-SALLÓ jr, Technical University of Cluj-Napoca Abstract: Discrete time signals carry information about systems and their internal functional mechanisms which characterize their complexity. Complexity measures are strongly related to information content and evaluations have been made on various signals in many ways in last few years. This paper uses information theory estimates of complexity as different types of entropies in order to estimate the complexity of various time discrete synthesized signals. Results show that this kind of indices can be a useful tool in diagnostic, fault detection and further development. DOI: https://doi.org/10.2478/amset-2020-0020 Pages: 54-57 Cite as: download info as bibtex View full article |
||||||
Update: 18-Dec-2024 | © Published by University Press |