Acta Marisiensis.
Seria Technologica



ISSN 2668-4217
ISSN-L 2668-4217
(Online)


English

Prima paginăColegiul editorialTrimite lucrareEtica publicațieiContactIndexare
Anul 2024
Volum 21 (XXXVIII), nr 1
Volum 21 (XXXVIII), nr 2

Anul 2023
Volum 20 (XXXVII), nr 1
Volum 20 (XXXVII), nr 2

Anul 2022
Volum 19 (XXXVI), nr 1
Volum 19 (XXXVI), nr 2

Anul 2021
Volum 18 (XXXV), nr 1
Volum 18 (XXXV), nr 2

Anul 2020
Volum 17 (XXXIV), nr 1
Volum 17 (XXXIV), nr 2

Anul 2019
Volum 16 (XXXIII), nr 1
Volum 16 (XXXIII), nr 2

Anul 2018
Volum 15 (XXXII), nr 1
Volum 15 (XXXII), nr 2

Anul 2017
Volum 14 (XXXI), nr 1
Volum 14 (XXXI), nr 2

Anul 2016
Volum 13 (XXX), nr 1
Volum 13 (XXX), nr 2

Anul 2015
Volum 12 (XXIX), nr 1
Volum 12 (XXIX), nr 2

Anul 2014
Volum 11 (XXVIII), nr 1
Volum 11 (XXVIII), nr 2

Anul 2013
Volum 10 (XXVII), nr 1
Volum 10 (XXVII), nr 2

Anul 2012
Volum 9 (XXVI), nr 1
Volum 9 (XXVI), nr 2

Anul 2011
Volum 8 (XXV), nr 1
Volum 8 (XXV), nr 2

Anul 2010
Volum 7 (XXIV), nr 1
Volum 7 (XXIV), nr 2

Anul 2009
Volum 6 (XXIII)

2021, Volume 18 (XXXV), no 1

Efficiency Analysis of Deeplearning4J Neural Network Classifiers in Development of Transition Based Dependency Parsers

Author(s):
László CSÉPÁNYI-FÜRJES, László KOVÁCS, University of Miskolc Institute of Information Science, Miskolc-Egyetemváros, Hungary

Abstract:
Dependency parsing is a complex process in natural language text processing, text to semantic transformation. The efficiency improvement of dependency parsing is a current and an active research area in the NLP community. The paper presents four transitionbased dependency parser models with implementation using DL4J classifiers. The efficiency of the proposed models were tested with Hungarian language corpora. The parsing model uses a data representation form based on lightweight embedding and a novel morphological-description-vector format is proposed for the input layer. Based on the test experiments on parsing Hungarian text documents, the proposed list-based transitions parsers outperform the widespread stack-based variants.

DOI: https://doi.org/10.2478/amset-2021-0006

Pages: 33-39

Cite as: download info as bibtex

View full article
Update: 18-Dec-2024 © Published by University Press