Acta Marisiensis.
Seria Technologica



ISSN 2668-4217
ISSN-L 2668-4217
(Online)


English

Prima paginăColegiul editorialTrimite lucrareEtica publicațieiContactIndexare
Anul 2024
Volum 21 (XXXVIII), nr 1
Volum 21 (XXXVIII), nr 2

Anul 2023
Volum 20 (XXXVII), nr 1
Volum 20 (XXXVII), nr 2

Anul 2022
Volum 19 (XXXVI), nr 1
Volum 19 (XXXVI), nr 2

Anul 2021
Volum 18 (XXXV), nr 1
Volum 18 (XXXV), nr 2

Anul 2020
Volum 17 (XXXIV), nr 1
Volum 17 (XXXIV), nr 2

Anul 2019
Volum 16 (XXXIII), nr 1
Volum 16 (XXXIII), nr 2

Anul 2018
Volum 15 (XXXII), nr 1
Volum 15 (XXXII), nr 2

Anul 2017
Volum 14 (XXXI), nr 1
Volum 14 (XXXI), nr 2

Anul 2016
Volum 13 (XXX), nr 1
Volum 13 (XXX), nr 2

Anul 2015
Volum 12 (XXIX), nr 1
Volum 12 (XXIX), nr 2

Anul 2014
Volum 11 (XXVIII), nr 1
Volum 11 (XXVIII), nr 2

Anul 2013
Volum 10 (XXVII), nr 1
Volum 10 (XXVII), nr 2

Anul 2012
Volum 9 (XXVI), nr 1
Volum 9 (XXVI), nr 2

Anul 2011
Volum 8 (XXV), nr 1
Volum 8 (XXV), nr 2

Anul 2010
Volum 7 (XXIV), nr 1
Volum 7 (XXIV), nr 2

Anul 2009
Volum 6 (XXIII)

2022, Volume 19 (XXXVI), no 2

SOON: Social Network of Machines Solution for Predictive Maintenance of Electrical Drive in Industry 4.0

Author(s):
Laszlo Barna IANTOVICS, Adrian GLIGOR, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures
Vicente Rodríguez MONTEQUÍN, University of Oviedo, Oviedo, Spain
Zoltán BALOGH, Ivana BUDINSKÁ, Emil GATIAL, Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia
Stefano CARRINO, Hatem GHORBEL, Jonathan DREYER, Haute École Arc Ingénierie HES-SO, St-Imier, Switzerland

Abstract:
Predictive methods represent techniques commonly met in Industry 4.0 that offer a way to early predict or detect faults of machines, devices or tools. This is useful to anticipate failures with the main goal of improving maintenance planning. Making such predictions could decrease the unexpected malfunction operation or manufacturing downtime and consequently the overall maintenance costs. In this paper we present the basis of the architecture designed for predictive maintenance in the project Social Network of Machines (SOON) under the paradigm of Industry 4.0, as well as a brief literature stateof-the-art survey of the topic. A particular implementation of this architecture, a testbed for electrical motors failure detection, is shown and evaluated.

DOI: https://doi.org/10.2478/amset-2022-0012

Pages: 12-19

Cite as: download info as bibtex

View full article
Update: 18-Dec-2024 © Published by University Press