Acta Marisiensis.
|
![]()
|
||||||
Anul 2024
Volum 21 (XXXVIII), nr 1 Volum 21 (XXXVIII), nr 2 Anul 2023 Volum 20 (XXXVII), nr 1 Volum 20 (XXXVII), nr 2 Anul 2022 Volum 19 (XXXVI), nr 1 Volum 19 (XXXVI), nr 2 Anul 2021 Volum 18 (XXXV), nr 1 Volum 18 (XXXV), nr 2 Anul 2020 Volum 17 (XXXIV), nr 1 Volum 17 (XXXIV), nr 2 Anul 2019 Volum 16 (XXXIII), nr 1 Volum 16 (XXXIII), nr 2 Anul 2018 Volum 15 (XXXII), nr 1 Volum 15 (XXXII), nr 2 Anul 2017 Volum 14 (XXXI), nr 1 Volum 14 (XXXI), nr 2 Anul 2016 Volum 13 (XXX), nr 1 Volum 13 (XXX), nr 2 Anul 2015 Volum 12 (XXIX), nr 1 Volum 12 (XXIX), nr 2 Anul 2014 Volum 11 (XXVIII), nr 1 Volum 11 (XXVIII), nr 2 Anul 2013 Volum 10 (XXVII), nr 1 Volum 10 (XXVII), nr 2 Anul 2012 Volum 9 (XXVI), nr 1 Volum 9 (XXVI), nr 2 Anul 2011 Volum 8 (XXV), nr 1 Volum 8 (XXV), nr 2 Anul 2010 Volum 7 (XXIV), nr 1 Volum 7 (XXIV), nr 2 Anul 2009 Volum 6 (XXIII) |
2022, Volume 19 (XXXVI), no 2
Cagatay Sunal, Lida Kouhalvandi, Dogus University, Istanbul, Turkey Abstract: This paper presents a methodology for predicting the lung diseases of patients through medical images using the Convolutional neural network (CNN). The importance of this work comes from the current SARS-CoV-2 pandemic simulation where with the presented method in this work, pneumonia infection from healthy situation can be diagnosed using the X-ray images. For validating the presented method, various X-ray images are employed in the Python coding environment where various libraries are used: TensorFlow for tensor operations, Scikit-learn for machine learning (ML), Keras for artificial neural network (ANN), matplotlib and seaborn libraries to perform exploratory data analysis on the data set and to evaluate the results visually. The practical simulation results reveal 91% accuracy, 90% precision, and 96% sensitivity making prediction between diseases. DOI: https://doi.org/10.2478/amset-2022-0018 Pages: 52-56 Cite as: download info as bibtex View full article |
||||||
Update: 18-Dec-2024 | © Published by University Press |