Acta Marisiensis.
|
![]()
|
||||||
Anul 2024
Volum 21 (XXXVIII), nr 1 Volum 21 (XXXVIII), nr 2 Anul 2023 Volum 20 (XXXVII), nr 1 Volum 20 (XXXVII), nr 2 Anul 2022 Volum 19 (XXXVI), nr 1 Volum 19 (XXXVI), nr 2 Anul 2021 Volum 18 (XXXV), nr 1 Volum 18 (XXXV), nr 2 Anul 2020 Volum 17 (XXXIV), nr 1 Volum 17 (XXXIV), nr 2 Anul 2019 Volum 16 (XXXIII), nr 1 Volum 16 (XXXIII), nr 2 Anul 2018 Volum 15 (XXXII), nr 1 Volum 15 (XXXII), nr 2 Anul 2017 Volum 14 (XXXI), nr 1 Volum 14 (XXXI), nr 2 Anul 2016 Volum 13 (XXX), nr 1 Volum 13 (XXX), nr 2 Anul 2015 Volum 12 (XXIX), nr 1 Volum 12 (XXIX), nr 2 Anul 2014 Volum 11 (XXVIII), nr 1 Volum 11 (XXVIII), nr 2 Anul 2013 Volum 10 (XXVII), nr 1 Volum 10 (XXVII), nr 2 Anul 2012 Volum 9 (XXVI), nr 1 Volum 9 (XXVI), nr 2 Anul 2011 Volum 8 (XXV), nr 1 Volum 8 (XXV), nr 2 Anul 2010 Volum 7 (XXIV), nr 1 Volum 7 (XXIV), nr 2 Anul 2009 Volum 6 (XXIII) |
2020, Volume 17 (XXXIV), no 1
Dániel Zoltán NAGY, Imre PILLER, Mathematical Institute, University of Miskolc, Miskolc, Hungary Abstract: The efficient human-machine interaction is an essential and current problem of computer science. The paper presents a gesture recognition method which applies optical flow calculation and an aggregation for obtaining a heatmap-like representation of the motion trajectories. After the overview of the image processing workflow, the paper introduces six symbols for providing some measurements. The described experiments show the robustness of the method against color, shape and time variance. DOI: https://doi.org/10.2478/amset-2020-0005 Pages: 22-26 Cite as: download info as bibtex View full article |
||||||
Update: 18-Dec-2024 | © Published by University Press |