Acta Marisiensis.
Seria Technologica



ISSN 2668-4217
ISSN-L 2668-4217
(Online)


English

Prima paginăColegiul editorialTrimite lucrareEtica publicațieiContactIndexare
Anul 2024
Volum 21 (XXXVIII), nr 1
Volum 21 (XXXVIII), nr 2

Anul 2023
Volum 20 (XXXVII), nr 1
Volum 20 (XXXVII), nr 2

Anul 2022
Volum 19 (XXXVI), nr 1
Volum 19 (XXXVI), nr 2

Anul 2021
Volum 18 (XXXV), nr 1
Volum 18 (XXXV), nr 2

Anul 2020
Volum 17 (XXXIV), nr 1
Volum 17 (XXXIV), nr 2

Anul 2019
Volum 16 (XXXIII), nr 1
Volum 16 (XXXIII), nr 2

Anul 2018
Volum 15 (XXXII), nr 1
Volum 15 (XXXII), nr 2

Anul 2017
Volum 14 (XXXI), nr 1
Volum 14 (XXXI), nr 2

Anul 2016
Volum 13 (XXX), nr 1
Volum 13 (XXX), nr 2

Anul 2015
Volum 12 (XXIX), nr 1
Volum 12 (XXIX), nr 2

Anul 2014
Volum 11 (XXVIII), nr 1
Volum 11 (XXVIII), nr 2

Anul 2013
Volum 10 (XXVII), nr 1
Volum 10 (XXVII), nr 2

Anul 2012
Volum 9 (XXVI), nr 1
Volum 9 (XXVI), nr 2

Anul 2011
Volum 8 (XXV), nr 1
Volum 8 (XXV), nr 2

Anul 2010
Volum 7 (XXIV), nr 1
Volum 7 (XXIV), nr 2

Anul 2009
Volum 6 (XXIII)

2020, Volume 17 (XXXIV), no 1

An Optical Flow-based Gesture Recognition Method

Author(s):
Dániel Zoltán NAGY, Imre PILLER, Mathematical Institute, University of Miskolc, Miskolc, Hungary

Abstract:
The efficient human-machine interaction is an essential and current problem of computer science. The paper presents a gesture recognition method which applies optical flow calculation and an aggregation for obtaining a heatmap-like representation of the motion trajectories. After the overview of the image processing workflow, the paper introduces six symbols for providing some measurements. The described experiments show the robustness of the method against color, shape and time variance.

DOI: https://doi.org/10.2478/amset-2020-0005

Pages: 22-26

Cite as: download info as bibtex

View full article
Update: 18-Dec-2024 © Published by University Press