Acta Marisiensis.
|
![]()
|
||||||
Anul 2024
Volum 21 (XXXVIII), nr 1 Volum 21 (XXXVIII), nr 2 Anul 2023 Volum 20 (XXXVII), nr 1 Volum 20 (XXXVII), nr 2 Anul 2022 Volum 19 (XXXVI), nr 1 Volum 19 (XXXVI), nr 2 Anul 2021 Volum 18 (XXXV), nr 1 Volum 18 (XXXV), nr 2 Anul 2020 Volum 17 (XXXIV), nr 1 Volum 17 (XXXIV), nr 2 Anul 2019 Volum 16 (XXXIII), nr 1 Volum 16 (XXXIII), nr 2 Anul 2018 Volum 15 (XXXII), nr 1 Volum 15 (XXXII), nr 2 Anul 2017 Volum 14 (XXXI), nr 1 Volum 14 (XXXI), nr 2 Anul 2016 Volum 13 (XXX), nr 1 Volum 13 (XXX), nr 2 Anul 2015 Volum 12 (XXIX), nr 1 Volum 12 (XXIX), nr 2 Anul 2014 Volum 11 (XXVIII), nr 1 Volum 11 (XXVIII), nr 2 Anul 2013 Volum 10 (XXVII), nr 1 Volum 10 (XXVII), nr 2 Anul 2012 Volum 9 (XXVI), nr 1 Volum 9 (XXVI), nr 2 Anul 2011 Volum 8 (XXV), nr 1 Volum 8 (XXV), nr 2 Anul 2010 Volum 7 (XXIV), nr 1 Volum 7 (XXIV), nr 2 Anul 2009 Volum 6 (XXIII) |
2020, Volume 17 (XXXIV), no 1
Fanni DORNER, Eötvös Loránd University Budapest, Hungary Rahele MOSLEH, Budapest University of Technology and Economics Budapest, Hungary Abstract: Epidemiological models play an important role in the study of diseases. These models belong to population dynamics models and can be characterized with differential equations. In this paper we focus our attention on two epidemic models for malaria spreading, namely Ross-, and extended Ross model. As both the continous and the corresponding numerical models should preserve the basic qualitative properties of the phenomenon, we paid special attention to its examination, and proved their invariance with reference to the data set. Moreover, existence and uniqueness of equilibrium points for both models of malaria are considered. We demonstrate the theoritical results with numerical simulations. DOI: https://doi.org/10.2478/amset-2020-0007 Pages: 31-39 Cite as: download info as bibtex View full article |
||||||
Update: 18-Dec-2024 | © Published by University Press |