Acta Marisiensis.
|
![]()
|
||||||
Anul 2024
Volum 21 (XXXVIII), nr 1 Volum 21 (XXXVIII), nr 2 Anul 2023 Volum 20 (XXXVII), nr 1 Volum 20 (XXXVII), nr 2 Anul 2022 Volum 19 (XXXVI), nr 1 Volum 19 (XXXVI), nr 2 Anul 2021 Volum 18 (XXXV), nr 1 Volum 18 (XXXV), nr 2 Anul 2020 Volum 17 (XXXIV), nr 1 Volum 17 (XXXIV), nr 2 Anul 2019 Volum 16 (XXXIII), nr 1 Volum 16 (XXXIII), nr 2 Anul 2018 Volum 15 (XXXII), nr 1 Volum 15 (XXXII), nr 2 Anul 2017 Volum 14 (XXXI), nr 1 Volum 14 (XXXI), nr 2 Anul 2016 Volum 13 (XXX), nr 1 Volum 13 (XXX), nr 2 Anul 2015 Volum 12 (XXIX), nr 1 Volum 12 (XXIX), nr 2 Anul 2014 Volum 11 (XXVIII), nr 1 Volum 11 (XXVIII), nr 2 Anul 2013 Volum 10 (XXVII), nr 1 Volum 10 (XXVII), nr 2 Anul 2012 Volum 9 (XXVI), nr 1 Volum 9 (XXVI), nr 2 Anul 2011 Volum 8 (XXV), nr 1 Volum 8 (XXV), nr 2 Anul 2010 Volum 7 (XXIV), nr 1 Volum 7 (XXIV), nr 2 Anul 2009 Volum 6 (XXIII) |
2023, Volume 20 (XXXVII), no 2
Sushil Kumar BHUIYA, Gopal DAS, Department of Mathematics, Murshidabad University, West Bengal, India Abstract: Finta [2], recently proposed a complex version of iteration procedures for holomorphic functions. The general theorem of the complex iteration function has developed by using the complex mean value theorem and discussed several iterative procedures for holomorphic functions. In this paper, we redevelop the general theorem of the complex iteration function by applying the fundamental theorem of the complex line integral. It is shown that all the results derived in the paper of Finta have been improved by the results of this paper. DOI: https://doi.org/10.2478/amset-2023-0016 Pages: 38-42 Cite as: download info as bibtex View full article |
||||||
Update: 18-Dec-2024 | © Published by University Press |