Acta Marisiensis.
Seria Technologica



ISSN 2668-4217
ISSN-L 2668-4217
(Online)


English

Prima paginăColegiul editorialTrimite lucrareEtica publicațieiContactIndexare
Anul 2024
Volum 21 (XXXVIII), nr 1
Volum 21 (XXXVIII), nr 2

Anul 2023
Volum 20 (XXXVII), nr 1
Volum 20 (XXXVII), nr 2

Anul 2022
Volum 19 (XXXVI), nr 1
Volum 19 (XXXVI), nr 2

Anul 2021
Volum 18 (XXXV), nr 1
Volum 18 (XXXV), nr 2

Anul 2020
Volum 17 (XXXIV), nr 1
Volum 17 (XXXIV), nr 2

Anul 2019
Volum 16 (XXXIII), nr 1
Volum 16 (XXXIII), nr 2

Anul 2018
Volum 15 (XXXII), nr 1
Volum 15 (XXXII), nr 2

Anul 2017
Volum 14 (XXXI), nr 1
Volum 14 (XXXI), nr 2

Anul 2016
Volum 13 (XXX), nr 1
Volum 13 (XXX), nr 2

Anul 2015
Volum 12 (XXIX), nr 1
Volum 12 (XXIX), nr 2

Anul 2014
Volum 11 (XXVIII), nr 1
Volum 11 (XXVIII), nr 2

Anul 2013
Volum 10 (XXVII), nr 1
Volum 10 (XXVII), nr 2

Anul 2012
Volum 9 (XXVI), nr 1
Volum 9 (XXVI), nr 2

Anul 2011
Volum 8 (XXV), nr 1
Volum 8 (XXV), nr 2

Anul 2010
Volum 7 (XXIV), nr 1
Volum 7 (XXIV), nr 2

Anul 2009
Volum 6 (XXIII)

2023, Volume 20 (XXXVII), no 2

Note on: “the Complex Version of a Result for Real Iterative Functions”

Author(s):
Sushil Kumar BHUIYA, Gopal DAS, Department of Mathematics, Murshidabad University, West Bengal, India

Abstract:
Finta [2], recently proposed a complex version of iteration procedures for holomorphic functions. The general theorem of the complex iteration function has developed by using the complex mean value theorem and discussed several iterative procedures for holomorphic functions. In this paper, we redevelop the general theorem of the complex iteration function by applying the fundamental theorem of the complex line integral. It is shown that all the results derived in the paper of Finta have been improved by the results of this paper.

DOI: https://doi.org/10.2478/amset-2023-0016

Pages: 38-42

Cite as: download info as bibtex

View full article
Update: 18-Dec-2024 © Published by University Press